Wednesday, December 6, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Impact of maternal cardiometabolic status after bariatric surgery on the association between telomere length and adiposity in offspring – Scientific Reports


  • San-Cristobal, R., Navas-Carretero, S., Martinez-Gonzalez, M. A., Ordovas, J. M. & Martinez, J. A. Contribution of macronutrients to obesity: Implications for precision nutrition. Nat. Rev. Endocrinol. 16, 305–320. https://doi.org/10.1038/s41574-020-0346-8 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Welendorf, C. et al. Obesity, weight loss, and influence on telomere length: New insights for personalized nutrition. Nutrition 66, 115–121. https://doi.org/10.1016/j.nut.2019.05.002 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alalwan, A. A. et al. US national trends in bariatric surgery: A decade of study. Surgery 170, 13–17. https://doi.org/10.1016/j.surg.2021.02.002 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Santos, J. et al. Effect of bariatric surgery on weight loss, inflammation, iron metabolism, and lipid profile. Scand. J. Surg. 103, 21–25. https://doi.org/10.1177/1457496913490467 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Izquierdo, A. G. & Crujeiras, A. B. Obesity-related epigenetic changes after bariatric surgery. Front. Endocrinol. (Lausanne) 10, 232. https://doi.org/10.3389/fendo.2019.00232 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nicoletti, C. F. et al. DNA methylation screening after roux-en Y gastric bypass reveals the epigenetic signature stems from genes related to the surgery per se. BMC Med. Genom. 12, 72. https://doi.org/10.1186/s12920-019-0522-7 (2019).

    Article 

    Google Scholar
     

  • Faenza, M., Benincasa, G., Docimo, L., Nicoletti, G. F. & Napoli, C. Clinical epigenetics and restoring of metabolic health in severely obese patients undergoing batriatric and metabolic surgery. Updates Surg. 74, 431–438. https://doi.org/10.1007/s13304-021-01162-9 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Metere, A. & Graves, C. E. Factors influencing epigenetic mechanisms: Is there a role for bariatric surgery?. High Throughput 9, 141. https://doi.org/10.3390/ht9010006 (2020).

    Article 

    Google Scholar
     

  • ElGendy, K., Malcomson, F. C., Bradburn, D. M. & Mathers, J. C. Effects of bariatric surgery on DNA methylation in adults: A systematic review and meta-analysis. Surg. Obes. Relat. Dis. 16, 128–136. https://doi.org/10.1016/j.soard.2019.09.075 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fraszczyk, E. et al. The effects of bariatric surgery on clinical profile, DNA methylation, and ageing in severely obese patients. Clin. Epigenet. 12, 14. https://doi.org/10.1186/s13148-019-0790-2 (2020).

    Article 

    Google Scholar
     

  • Li, C. et al. Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am. J. Hum. Genet. 106, 389–404. https://doi.org/10.1016/j.ajhg.2020.02.006 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gielen, M. et al. Body mass index is negatively associated with telomere length: A collaborative cross-sectional meta-analysis of 87 observational studies. Am. J. Clin. Nutr. 108, 453–475. https://doi.org/10.1093/ajcn/nqy107 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahrizi, M. S. et al. Leukocyte telomere length and obesity in children and adolescents: A systematic review and meta-analysis. Front. Genet. 13, 861101. https://doi.org/10.3389/fgene.2022.861101 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pena, E. et al. Telomere length in patients with obesity submitted to bariatric surgery: A systematic review. Eur. Eat Disord. Rev. 29, 842–853. https://doi.org/10.1002/erv.2865 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Andreu-Sanchez, S. et al. Genetic, parental and lifestyle factors influence telomere length. Commun. Biol. 5, 565. https://doi.org/10.1038/s42003-022-03521-7 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dell’Agnolo, C. M., Carvalho, M. D. & Pelloso, S. M. Pregnancy after bariatric surgery: Implications for mother and newborn. Obes. Surg. 21, 699–706. https://doi.org/10.1007/s11695-011-0363-8 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kwong, W., Tomlinson, G. & Feig, D. S. Maternal and neonatal outcomes after bariatric surgery; a systematic review and meta-analysis: Do the benefits outweigh the risks?. Am. J. Obstet. Gynecol. 218, 573–580. https://doi.org/10.1016/j.ajog.2018.02.003 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Monasso, G. S., Voortman, T. & Felix, J. F. Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth. Epigenetics 1–11, 2022. https://doi.org/10.1080/15592294.2022.2076051 (2022).

    Article 

    Google Scholar
     

  • Martens, D. S., Plusquin, M., Gyselaers, W., De Vivo, I. & Nawrot, T. S. Maternal pre-pregnancy body mass index and newborn telomere length. BMC Med. 14, 148. https://doi.org/10.1186/s12916-016-0689-0 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, B. et al. Maternal overweight but not paternal overweight before pregnancy is associated with shorter newborn telomere length: Evidence from Guangxi Zhuang birth cohort in China. BMC Pregn. Childbirth 21, 283. https://doi.org/10.1186/s12884-021-03757-x (2021).

    Article 

    Google Scholar
     

  • Piche, M. E., Tardif, I., Auclair, A. & Poirier, P. Effects of bariatric surgery on lipid-lipoprotein profile. Metabolism 115, 154441. https://doi.org/10.1016/j.metabol.2020.154441 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Genua, I. et al. Changes in the composition and function of lipoproteins after bariatric surgery in patients with severe obesity. J. Clin. Med. 10, 8. https://doi.org/10.3390/jcm10081716 (2021).

    Article 

    Google Scholar
     

  • Ooi, G. J. et al. Detailed description of change in serum cholesterol profile with incremental weight loss after restrictive bariatric surgery. Obes. Surg. 28, 1351–1362. https://doi.org/10.1007/s11695-017-3015-9 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Arnaiz, E. G. et al. Evaluation of lipoprotein profile and residual risk three years after bariatric surgery. Obes. Surg. 31, 4033–4044. https://doi.org/10.1007/s11695-021-05543-2 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Z. et al. Temporal associations between leukocytes DNA methylation and blood lipids: A longitudinal study. Clin. Epigenet. 14, 132. https://doi.org/10.1186/s13148-022-01356-x (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pelegi-Siso, D., de Prado, P., Ronkainen, J., Bustamante, M. & Gonzalez, J. R. methylclock: A Bioconductor package to estimate DNA methylation age. Bioinformatics 37, 1759–1760. https://doi.org/10.1093/bioinformatics/btaa825 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lulkiewicz, M., Bajsert, J., Kopczynski, P., Barczak, W. & Rubis, B. Telomere length: How the length makes a difference. Mol. Biol. Rep. 47, 7181–7188. https://doi.org/10.1007/s11033-020-05551-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Meyer, T. et al. Paternal age at birth is an important determinant of offspring telomere length. Hum. Mol. Genet. 16, 3097–3102. https://doi.org/10.1093/hmg/ddm271 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Vyas, C. M. et al. Telomere length and its relationships with lifestyle and behavioural factors: Variations by sex and race/ethnicity. Age Ageing 50, 838–846. https://doi.org/10.1093/ageing/afaa186 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, S. K., Xu, R., Khan, R. J. & Gaye, A. Modifiable mediators associated with the relationship between adiposity and leukocyte telomere length in US adults: The National Health and Nutrition Examination Survey. Prev. Med. 138, 106133. https://doi.org/10.1016/j.ypmed.2020.106133 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • San-Cristobal, R., de Toro-Martin, J. & Vohl, M. C. Appraisal of gene-environment interactions in GWAS for evidence-based precision nutrition implementation. Curr. Nutr. Rep. https://doi.org/10.1007/s13668-022-00430-3 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, F. et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 9, 117–126. https://doi.org/10.1016/S2213-8587(20)30365-X (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Martens, D. S. et al. Association of newborn telomere length with blood pressure in childhood. JAMA Netw. Open 5, e2225521. https://doi.org/10.1001/jamanetworkopen.2022.25521 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, Y. & Hagg, S. Telomere length and cardiovascular disease risk. Curr. Opin. Cardiol. 34, 270–274. https://doi.org/10.1097/HCO.0000000000000613 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mazidi, M., Kengne, A. P., Sahebkar, A. & Banach, M. Telomere length is associated with cardiometabolic factors in US adults. Angiology 69, 164–169. https://doi.org/10.1177/0003319717712860 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Azcona-Sanjulian, M. C. Telomere length and pediatric obesity: A review. Genes Basel 12, 946. https://doi.org/10.3390/genes12060946 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formichi, C. et al. Weight loss associated with bariatric surgery does not restore short telomere length of severe obese patients after 1 year. Obes. Surg. 24, 2089–2093. https://doi.org/10.1007/s11695-014-1300-4 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Laimer, M. et al. Telomere length increase after weight loss induced by bariatric surgery: Results from a 10 year prospective study. Int. J. Obes. (Lond.) 40, 773–778. https://doi.org/10.1038/ijo.2015.238 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Girchenko, P. et al. Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth. Clin. Epigenet. 9, 49. https://doi.org/10.1186/s13148-017-0349-z (2017).

    Article 

    Google Scholar
     

  • Simpkin, A. J. et al. Prenatal and early life influences on epigenetic age in children: A study of mother-offspring pairs from two cohort studies. Hum. Mol. Genet. 25, 191–201. https://doi.org/10.1093/hmg/ddv456 (2016).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Monasso, G. S., Kupers, L. K., Jaddoe, V. W. V., Heil, S. G. & Felix, J. F. Associations of circulating folate, vitamin B12 and homocysteine concentrations in early pregnancy and cord blood with epigenetic gestational age: The Generation R Study. Clin. Epigenet. 13, 95. https://doi.org/10.1186/s13148-021-01065-x (2021).

    Article 

    Google Scholar
     

  • Voortman, T. et al. Plasma fatty acid patterns during pregnancy and child’s growth, body composition, and cardiometabolic health: The Generation R Study. Clin. Nutr. 37, 984–992. https://doi.org/10.1016/j.clnu.2017.04.006 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gorenjak, V., Akbar, S., Stathopoulou, M. G. & Visvikis-Siest, S. The future of telomere length in personalized medicine. Front. Biosci. (Landm. Ed.) 23, 1628–1654. https://doi.org/10.2741/4664 (2018).

    Article 

    Google Scholar
     

  • Kyle, U. G., Earthman, C. P., Pichard, C. & Coss-Bu, J. A. Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 69, 1298–1305. https://doi.org/10.1038/ejcn.2015.86 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Group W. H. O. M. G. R. S. WHO Child Growth Standards based on length/height, weight and age. Acta. Paediatr. Suppl. 450, 76–85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x (2006).

    Article 

    Google Scholar
     

  • Must, A. & Anderson, S. E. Body mass index in children and adolescents: Considerations for population-based applications. Int. J. Obes. (Lond.) 30, 590–594. https://doi.org/10.1038/sj.ijo.0803300 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Simental-Mendia, L. E., Rodriguez-Moran, M. & Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6, 299–304. https://doi.org/10.1089/met.2008.0034 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, S. et al. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: Cross-sectional and prospective cohort study. J. Transl. Med. 14, 260. https://doi.org/10.1186/s12967-016-1020-8 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aryee, M. J. et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369. https://doi.org/10.1093/bioinformatics/btu049 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, A. T. et al. DNA methylation-based estimator of telomere length. Aging (Albany N.Y.) 11, 5895–5923. https://doi.org/10.18632/aging.102173 (2019).

    Article 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    10FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: