Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).
Krausz, C. & Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 15, 369–384 (2018).
Oud, M. S. et al. A systematic review and standardized clinical validity assessment of male infertility genes. Hum. Reprod. 34, 932–941 (2019).
Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).
Wyrwoll, M. J. et al. Genetic architecture of azoospermia-time to advance the standard of care. Eur. Urol. 83, 452–462 (2022).
Köhler, S. et al. The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017).
Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).
Akawi, N. et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat. Genet. 47, 1363–1369 (2015).
Vissers, L. E. L. M. & Veltman, J. A. Standardized phenotyping enhances Mendelian disease gene identification. Nat. Genet. 47, 1222–1224 (2015).
Hamosh, A., Scott, A. F., Amberger, J., Valle, D. & McKusick, V. A. Online Mendelian inheritance in man (OMIM). Hum. Mutat. 15, 57–61 (2000).
Rath, A. et al. Representation of rare diseases in health information systems: the Orphanet approach to serve a wide range of end users. Hum. Mutat. 33, 803–808 (2012).
Köhler, S. et al. The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).
Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).
Nieschlag, E., Behre, H. M. & Nieschlag, S. Andrology: male reproductive health and dysfunction (Springer, 2010).
McLachlan, R. I., Rajpert-De Meyts, E., Hoei-Hansen, C. E., de Kretser, D. M. & Skakkebaek, N. E. Histological evaluation of the human testis — approaches to optimizing the clinical value of the assessment: mini review. Hum. Reprod. 22, 2–16 (2007).
World Health Organization. WHO laboratory manual for examination and processing of human semen 6th edn (WHO, 2021).
Schlegel, P. N. et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part II. J. Urol. 205, 44–51 (2021).
Robinson, P. N. et al. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008).
Pavan, S. et al. Clinical practice guidelines for rare diseases: the Orphanet database. PLoS One 12, e0170365 (2017).
Boehm, U. et al. European consensus statement on congenital hypogonadotropic hypogonadism — pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).
Lenzi, A. et al. Epidemiology; diagnosis, and treatment of male hypogonadotropic hypogonadism. J. Endocrinol. Invest. 32, 934–938 (2009).
Chudnovsky, A. & Niederberger, C. S. Gonadotropin therapy for infertile men with hypogonadotropic hypogonadism. J. Androl. 28, 644–646 (2007).
Yabiku, R. S. et al. A search for disorders of sex development among infertile men. Sex. Dev. 12, 275–280 (2018).
Mohnach, L. et al. Nonsyndromic Disorders of Testicular Development Overview. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1547/ (updated 18 Aug 2022).
Young, J. Approach to the male patient with congenital hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 97, 707–718 (2012).
Young, J. et al. Clinical management of congenital hypogonadotropic hypogonadism. Endocr. Rev. 40, 669–710 (2019).
Salonia, A. et al. Sexual and Reproductive Health EAU Guidelines. Uroweb https://uroweb.org/guidelines/sexual-and-reproductive-health/chapter/male-infertility (2021).
Barratt, C. L. R. et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance — challenges and future research opportunities. Hum. Reprod. Update 23, 660–680 (2017).
Björndahl, L. et al. Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology. Hum. Reprod. 37, 2497–2502 (2022).
Oud, M. S. et al. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum. Reprod. 35, 240–252 (2020).
Sironen, A., Shoemark, A., Patel, M., Loebinger, M. R. & Mitchison, H. M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77, 2029–2048 (2020).
Choy, J. T. & Amory, J. K. Nonsurgical management of oligozoospermia. J. Clin. Endocrinol. Metab. 105, e4194–e4207 (2020).
Vloeberghs, V. et al. How successful is TESE-ICSI in couples with non-obstructive azoospermia? Hum. Reprod. 30, 1790–1796 (2015).
Tournaye, H., Krausz, C. & Oates, R. D. Concepts in diagnosis and therapy for male reproductive impairment. Lancet Diabetes Endocrinol. 5, 554–564 (2017).
Krausz, C. Male infertility: pathogenesis and clinical diagnosis. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 271–285 (2011).
Lotti, F. et al. The European Academy of Andrology (EAA) ultrasound study on healthy, fertile men: an overview on male genital tract ultrasound reference ranges. Andrology 10, 118–132 (2022).
Lotti, F. & Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Reprod. Update 21, 56–83 (2015).
Schoor, R. A., Elhanbly, S., Niederberger, C. S. & Ross, L. S. The role of testicular biopsy in the modern management of male infertility. J. Urol. 167, 197–200 (2002).
Wosnitzer, M. S. & Goldstein, M. Obstructive azoospermia. Urol. Clin. North. Am. 41, 83–95 (2014).
Lotti, F. et al. The prevalence of midline prostatic cysts and the relationship between cyst size and semen parameters among infertile and fertile men. Hum. Reprod. 33, 2023–2034 (2018).
Schlegel, P. N. Causes of azoospermia and their management. Reprod. Fertil. Dev. 16, 561–572 (2004).
Anguiano, A. et al. Congenital bilateral absence of the vas deferens: a primarily genital form of cystic fibrosis. JAMA 267, 1794–1797 (1992).
Corona, G. et al. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: a systematic review and meta-analysis. Hum. Reprod. Update 25, 733–757 (2019).
Bernie, A. M., Mata, D. A., Ramasamy, R. & Schlegel, P. N. Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. Fertil. Steril. 104, 1099–1103 (2015). e1–3.
Deruyver, Y., Vanderschueren, D. & Van der Aa, F. Outcome of microdissection TESE compared with conventional TESE in non-obstructive azoospermia: a systematic review. Andrology 2, 20–24 (2014).
Fietz, D. & Bergmann, M. in Endocrinology of the Testis and Male Reproduction (eds Simoni, M. & Huhtaniemi, I.) (Springer Cham, 2017).
Bergmann, M. & Kliesch, S. in Andrology (eds Nieschlag, E., Behre, H. M. & Nieschlag, S.) 155–167 (Springer Berlin Heidelberg, 2010).
Johnsen, S. G. Testicular biopsy score count — a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Horm. Res. Paediatr. 1, 2–25 (1970).
O’Donnell, L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 4, e979623 (2014).
Zhengwei, Y., Wreford, N. G., Royce, P., de Kretser, D. M. & McLachlan, R. I. Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J. Clin. Endocrinol. Metab. 83, 1284–1291 (1998).
Aitken, R. J. & Lewis, S. E. M. DNA damage in testicular germ cells and spermatozoa. When and how is it induced? How should we measure it? What does it mean? Andrology. https://doi.org/10.1111/andr.13375 (2023).
Derijck, A. A. H. A. et al. Motile human normozoospermic and oligozoospermic semen samples show a difference in double-strand DNA break incidence. Hum. Reprod. 22, 2368–2376 (2007).
Sun, X. et al. The Catsper channel and its roles in male fertility: a systematic review. Reprod. Biol. Endocrinol. 15, 65 (2017).
Young, S. et al. Unexplained infertility is frequently caused by defective CatSper function preventing sperm from penetrating the egg coat. Preprint at medRxiv https://doi.org/10.1101/2023.03.23.23286813 (2023).
Bonte, D. et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil. Steril. 112, 266–274 (2019).
Shefchek, K. A. et al. The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 48, D704–D715 (2020).
Köhler, S. et al. Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–D1027 (2019).
Amer, M., Haggar, S. E., Moustafa, T., Abd El-Naser, T. & Zohdy, W. Testicular sperm extraction: impact of testicular histology on outcome, number of biopsies to be performed and optimal time for repetition. Hum. Reprod. 14, 3030–3034 (1999).
Tournaye, H. et al. Correlation between testicular histology and outcome after intracytoplasmic sperm injection using testicular spermatozoa. Hum. Reprod. 11, 127–132 (1996).