Wednesday, October 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism – International Journal of Oral Science


  • Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 41, 211–218 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boschert, V., Teusch, J., Müller-Richter, U. D. A., Brands, R. C. & Hartmann, S. PKM2 modulation in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 23, 775 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, S., Ghosh, S. & Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol. 86, 1216–1230 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Devic, S. Warburg effect—a consequence or the cause of carcinogenesis? J. Cancer 7, 817–822 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Moles, M., Keim-Del Pino, C. & Ramos-García, P. Hallmarks of cancer expression in oral lichen planus: a scoping review of systematic reviews and meta-analyses. Int. J. Mol. Sci. 23, 13099 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guak, H. et al. PGC-1β maintains mitochondrial metabolism and restrains inflammatory gene expression. Sci. Rep. 12, 16028 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. PGC-1α participates in tumor chemoresistance by regulating glucose metabolism and mitochondrial function. Mol. Cell Biochem. 478, 47–57 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann. N. Y Acad. Sci. 1516, 300–311 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fang, X. Q. et al. PGC1α cooperates with FOXA1 to regulate epithelial mesenchymal transition through the TCF4-TWIST1. Int J. Mol. Sci. 23, 8247 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid, S. et al. PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds. Mol. Metab. 66, 101643 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, X. et al. Posttranslational regulation of PGC-1α and its implication in cancer metabolism. Int. J. Cancer 145, 1475–1483 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bost, F. & Kaminski, L. The metabolic modulator PGC-1α in cancer. Am. J. Cancer Res. 9, 198–211 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun, S. H., Han, S. H. & Park, J. I. Peroxisome proliferator-activated receptor γ and PGC-1α in cancer: dual actions as tumor promoter and suppressor. PPAR Res. 2018, 6727421 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. L. et al. PGC1α downregulation and glycolytic phenotype in thyroid cancer. J. Cancer 10, 3819–3829 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Q. et al. PPARγ coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARγ-dependent WNT/β-catenin/pyruvate dehydrogenase kinase isozyme 1 axis. Hepatology 73, 644–660 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Torrano, V. et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat. Cell Biol. 18, 645–656 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda, D. et al. Decreased mitochondrial copy numbers in oral squamous cell carcinoma. Head Neck 38, 1170–1175 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mello, F. W. et al. Prevalence of oral potentially malignant disorders: a systematic review and meta-analysis. J. Oral. Pathol. Med. 47, 633–640 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Teh, M. T. et al. Molecular signatures of tumour and its microenvironment for precise quantitative diagnosis of oral squamous cell carcinoma: an international multi-cohort diagnostic validation study. Cancers 14, 1389 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brouns, E. R. et al. Oral leukoplakia classification and staging system with incorporation of differentiated dysplasia. Oral Dis. 00, 1–10 (2022).


    Google Scholar
     

  • Li, C. et al. Autofluorescence imaging as a noninvasive tool of risk stratification for malignant transformation of oral leukoplakia: a follow-up cohort study. Oral. Oncol. 130, 105941 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Amarasinghe, H. et al. Economic cost of managing patients with oral potentially malignant disorders in Sri Lanka. Community Dent. Oral. Epidemiol. 50, 124–129 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sathasivam, H. P. et al. Gene expression changes associated with malignant transformation of oral potentially malignant disorders. J. Oral. Pathol. Med. 50, 60–67 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sathasivam, H. P. et al. Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology. Br. J. Cancer 125, 413–421 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Certo, M., Tsai, C. H., Pucino, V., Ho, P. C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mishra, D. & Banerjee, D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 11, 750 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, D. et al. Lactic acid, a driver of tumor-stroma interactions. Int. Immunopharmacol. 106, 108597 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Summermatter, S., Santos, G., Pérez-Schindler, J. & Handschin, C. Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proc. Natl. Acad. Sci. USA 110, 8738–8743 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 1001–1015 (2014).


    Google Scholar
     

  • Bruns, I. et al. Disruption of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α reverts key features of the neoplastic phenotype of glioma cells. J. Biol. Chem. 294, 3037–3050 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noorolyai, S., Shajari, N., Baghbani, E., Sadreddini, S. & Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene 698, 120–128 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alzahrani, A. S. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 59, 125–132 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target Ther. 6, 425 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, J. et al. The key role of PGC-1α in mitochondrial biogenesis and the proliferation of pulmonary artery vascular smooth muscle cells at an early stage of hypoxic exposure. Mol. Cell Biochem. 367, 9–18 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Shiota, M. et al. Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol. Endocrinol. 24, 114–127 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Yang, M. & Jin, H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol. Med. Rep. 24, 613 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun, S. H. & Park, J. I. PGC-1α regulates cell proliferation and invasion via AKT/GSK-3β/β-catenin pathway in human colorectal cancer SW620 and SW480 cells. Anticancer Res. 40, 653–664 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lien, E. C., Lyssiotis, C. A. & Cantley, L. C. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Metab. Cancer 207, 39–72 (2016).

    Article 

    Google Scholar
     

  • Feng, Y. et al. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7, 6124–6136 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, D. Y., Butcher, E. R. & Saint-Geniez, M. Suppression of PGC-1α drives metabolic dysfunction in TGFβ2-induced EMT of retinal pigment epithelial cells. Int. J. Mol. Sci. 22, 4701 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohtasham, N. et al. Evaluation of tissue and serum expression levels of lactate dehydrogenase isoenzymes in patients with head and neck squamous cell carcinoma. Anticancer Agents Med. Chem. 19, 2072–2078 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bagué, S. et al. Prognostic capacity of the transcriptional expression of lactate dehydrogenase A in patients with head and neck squamous cell carcinoma. Head Neck 44, 2505–2512 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cai, H. et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition. Front. Oncol. 9, 1446 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grimm, M. et al. Association of cancer metabolism-related proteins with oral carcinogenesis— indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J. Transl. Med. 12, 208 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, F., Zhao, T., Zhong, C., Zhu, J. & Zhao, H. LDHA is necessary for the tumorigenicity of esophageal squamous cell carcinoma. Tumour Biol. 34, 25–31 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, F., Ma, S., Xue, Y., Hou, J. & Zhang, Y. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochem. Biophys. Res. Commun. 469, 985–992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, J. et al. LDHA promotes tumor metastasis by facilitating epithelial‑mesenchymal transition in renal cell carcinoma. Mol. Med. Rep. 16, 8335–8344 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura, H. & Takada, K. Reactive oxygen species in cancer: current findings and future directions. Cancer Sci. 112, 3945–3952 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nourazarian, A. R., Kangari, P. & Salmaninejad, A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac. J. Cancer Prev. 15, 4745–4751 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lenaz, G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv. Exp. Med. Biol. 942, 93–136 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, Á. L. & Pérez, S. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell Longev. 2020, 1452696 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. et al. PGC1α is required for the induction of contact inhibition by suppressing ROS. Biochem. Biophys. Res. Commun. 501, 739–744 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Thirupathi, A. & de Souza, C. T. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J. Physiol. Biochem. 73, 487–494 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, B. et al. PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget 8, 60299–60311 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, J. S., Hong, M. Z. & Ren, J. L. Reactive oxygen species: a double-edged sword in oncogenesis. World J. Gastroenterol. 15, 1702–1707 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, V. et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9, 735 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarmiento-Salinas, F. L. et al. Reactive oxygen species: role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 284, 119942 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Assi, M. The differential role of reactive oxygen species in early and late stages of cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R646–R653 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liao, Z., Chua, D. & Tan, N. S. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol. Cancer 18, 65 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatti, J. S., Bhatti, G. K. & Reddy, P. H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 1066–1077 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gravel, S. P. Deciphering the dichotomous effects of PGC-1α on tumorigenesis and metastasis. Front. Oncol. 8, 75 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharabi, K. et al. Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes. Cell 169, 148–160.e115 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, Y. et al. SR18292 exerts potent antitumor effects in multiple myeloma via inhibition of oxidative phosphorylation. Life Sci. 256, 117971 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Raggi, C. et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J. Hepatol. 74, 1373–1385 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W., Yang, Y., Zhang, X. & Shi, H. Oral potentially malignant disorder research in Taiwan and mainland China: a scientometric analysis. J. Dent. Sci. 17, 1854–1858 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: