Tuesday, September 26, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Machine learning to develop a predictive model of pressure injury in persons with spinal cord injury – Spinal Cord


  • Chen HL, Cai JY, Du L, Shen HW, Yu HR, Song YP, et al. Incidence of pressure injury in individuals with spinal cord injury: a systematic review and meta-analysis. J Wound Ostomy Cont Nurs. 2020;47:215–23.

    Article 
    CAS 

    Google Scholar
     

  • Hogaboom NS, Worobey LA, Houlihan BV, Heinemann AW, Boninger ML. Wheelchair breakdowns are associated with pain, pressure injuries, rehospitalization, and self-perceived health in full-time wheelchair users with spinal cord injury. Arch Phys Med Rehabil. 2018;99:1949–56.

    Article 
    PubMed 

    Google Scholar
     

  • European Pressure Ulcer Panel, National Pressure Injury Advisory Panel, Pan Pacific Pressure Injury Alliance. prevention and treatment of pressure ulcers/injuries. EPUAP/NPIAP/PPPIA; 2019. Available from: https://guidelinesales.com/page/NPIAP.

  • Edsberg LE, Langemo D, Baharestani MM, Posthauer ME, Goldberg M. Unavoidable pressure injury: state of the science and consensus outcomes. J Wound Ostomy Cont Nurs. 2014;41:313–34.

    Article 

    Google Scholar
     

  • Groah SL, Schladen M, Pineda CG, Hsieh CHJ. Prevention of pressure ulcers among people with spinal cord injury: a systematic review. PM R. 2015;7:613–36.

    Article 
    PubMed 

    Google Scholar
     

  • Moore ZE, Patton D. Risk assessment tools for the prevention of pressure ulcers. Cochrane Database Syst Rev. 2019;1:CD006471.

    PubMed 

    Google Scholar
     

  • Källman U, Lindgren M. Predictive validity of 4 risk assessment scales for prediction of pressure ulcer development in a hospital setting. Advances in skin & wound care [Internet]. 2014 Feb [cited 2022 Oct 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/24440864/.

  • Flett HM, Delparte JJ, Scovil CY, Higgins J, Laramée MT, Burns AS. Determining pressure injury risk on admission to inpatient spinal cord injury rehabilitation: a comparison of the FIM, Spinal Cord Injury Pressure Ulcer Scale, and Braden Scale. Arch Phys Med Rehabil. 2019;100:1881–7.

    Article 
    PubMed 

    Google Scholar
     

  • Bogie KM, Roggenkamp SK, Zeng N, Seton JM, Schwartz KR, Henzel MK, et al. Development of predictive informatics tool using electronic health records to inform personalized evidence-based pressure injury management for veterans with spinal cord injury. Mil Med. 2021;186:651–8.

    Article 
    PubMed 

    Google Scholar
     

  • Burkhart L, Skemp L, Siddiqui S. Veteran model of preventing community-acquired pressure injuries associated with spinal cord injury: a qualitative descriptive study. J Spinal Cord Med. 2021;1–15 https://doi.org/10.1080/10790268.2021.1982177.

  • Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188:2222–39.

    PubMed 

    Google Scholar
     

  • Shamout F, Zhu T, Clifton DA. Machine learning for clinical outcome prediction. IEEE Rev Biomed Eng. 2021;14:116–26.

    Article 
    PubMed 

    Google Scholar
     

  • Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inf Assoc. 2017;24:1052–61.

    Article 

    Google Scholar
     

  • Koola JD, Ho S, Chen G, Perkins AM, Cao A, Davis SE, et al. Development of a national Department of Veterans Affairs mortality risk prediction model among patients with cirrhosis. BMJ Open Gastroenterol. 2019;6:e000342.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Cabo F, Rossello X, Fuster V, Benito F, Manzano JP, Silla JC, et al. Machine learning improves cardiovascular risk definition for young, asymptomatic individuals. J Am Coll Cardiol. 2020;76:1674–85.

    Article 
    PubMed 

    Google Scholar
     

  • Stark GF, Hart GR, Nartowt BJ, Deng J. Predicting breast cancer risk using personal health data and machine learning models. PLoS ONE. 2019;14:e0226765.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alderden J, Pepper GA, Wilson A, Whitney JD, Richardson S, Butcher R, et al. Predicting pressure injury in critical care patients: a machine-learning model. Am J Crit Care. 2018;27:461–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SK, Ahn J, Shin JH, Lee JY. Application of machine learning methods in nursing home research. Int J Environ Res Public Health. 2020;17:E6234.

    Article 

    Google Scholar
     

  • Cai JY, Zha ML, Song YP, Chen HL. Predicting the development of surgery-related pressure injury using a machine learning algorithm model. J Nurs Res. 2020;29:e135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song W, Kang MJ, Zhang L, Jung W, Song J, Bates DW, et al. Predicting pressure injury using nursing assessment phenotypes and machine learning methods. J Am Med Inf Assoc. 2021;28:759–65.

    Article 

    Google Scholar
     

  • Veterans Affairs, SCI System of Care [Internet]. [cited 2022 Oct 17]. Available from: https://www.sci.va.gov/VAs_SCID_System_of_Care.asp.

  • Luther SL, Thomason SS, Sabharwal S, Finch DK, McCart J, Toyinbo P, et al. Leveraging electronic health care record information to measure pressure ulcer risk in veterans with spinal cord injury: a longitudinal study protocol. JMIR Res Protoc. 2017;6:e3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan JR. Decision trees and decision-making. IEEE Trans Syst Man Cybern. 1990;20:339–46.

    Article 

    Google Scholar
     

  • Pruitt R. 146-2008: Using SAS® Enterprise MinerTM to prescribe a pre-screen mailing. SAS Glob Forum. 2008;6:1–6.

  • Data Mining Software, Model Development and Deployment, SAS Enterprise Miner [Internet]. SAS® Enterprise MinerTM. 2018 [cited 2022 Oct 17]. Available from: https://www.sas.com/en_us/software/enterprise-miner.html.

  • Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA. 2017;318:1377–84.

    Article 
    PubMed 

    Google Scholar
     

  • VHA Support Service Center Capital Assets (VSSC), Department of Veterans Affairs Open Data Portal [Internet]. [cited 2022 Oct 17]. Available from: https://www.data.va.gov/dataset/VHA-Support-Service-Center-Capital-Assets-VSSC-/2fr5-sktm.

  • Centers for medicare and medicaid services. 2022 ICD-10-CM | CMS [Internet]. [cited 2022 Oct 17]. Available from: https://www.cms.gov/medicare/icd-10/2022-icd-10-cm.



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: