Friday, June 9, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Methadone alters transcriptional programs associated with synapse formation in human cortical organoids – Translational Psychiatry


  • Haight SC, Ko JY, Tong VT, Bohm MK, Callaghan WM. Opioid use disorder documented at delivery hospitalization – United States, 1999-2014. Morb Mortal Wkly Rep. 2018;67:845–9.

    Article 

    Google Scholar
     

  • Hirai AH, Ko JY, Owens PL, Stocks C, Patrick SW. Neonatal abstinence syndrome and maternal opioid-related diagnoses in the US, 2010-2017. JAMA 2021;325:146–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krans EE, Patrick SW. Opioid use disorder in pregnancy: Health policy and practice in the midst of an epidemic. Obstet Gynecol. 2016;128:4–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farid WO, Dunlop SA, Tait RJ, Hulse GK. The effects of maternally administered methadone, buprenorphine and naltrexone on offspring: review of human and animal data. Curr Neuropharmacol. 2008;6:125–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattick RP, Breen C, Kimber J, Davoli M Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst Rev. 2009:CD002209.

  • Oesterle TS, Thusius NJ, Rummans TA, Gold MS. Medication-Assisted Treatment for Opioid-Use Disorder. Mayo Clin Proc. 2019;94:2072–86.

    Article 
    PubMed 

    Google Scholar
     

  • Kongstorp M, Bogen IL, Stiris T, Andersen JM. High Accumulation of Methadone Compared with Buprenorphine in Fetal Rat Brain after Maternal Exposure. J Pharm Exp Ther. 2019;371:130.

    Article 
    CAS 

    Google Scholar
     

  • Badhan RKS, Gittins R. Precision dosing of methadone during pregnancy: A pharmacokinetics virtual clinical trials study. J Subst Abus Treat. 2021;130:108521.

    Article 
    CAS 

    Google Scholar
     

  • Jones HE, Kaltenbach K, Heil SH, Stine SM, Coyle MG, Arria AM, et al. Neonatal abstinence syndrome after methadone or buprenorphine exposure. N. Engl J Med. 2010;363:2320–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaalema DE, Scott TL, Heil SH, Coyle MG, Kaltenbach K, Badger GJ, et al. Differences in the profile of neonatal abstinence syndrome signs in methadone- versus buprenorphine-exposed neonates. Addiction 2012;107(Suppl:):53–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bier JB, Finger AS, Bier BA, Johnson TA, Coyle MG. Growth and developmental outcome of infants with in-utero exposure to methadone vs buprenorphine. J Perinatol. 2015;35:656–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine TA, Davie‐Gray A, Kim HM, Lee SJ, Woodward LJ. Prenatal methadone exposure and child developmental outcomes in 2‐year‐old children. Dev Med Child Neurol. 2021;63:1114–22.

    Article 
    PubMed 

    Google Scholar
     

  • Grecco GG, Mork BE, Huang J-Y, Metzger CE, Haggerty DL, Reeves KC, et al. Prenatal methadone exposure disrupts behavioral development and alters motor neuron intrinsic properties and local circuitry. Elife. 2021;10:e66230.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong C-S, Lee Y-J, Chiang Y-C, Fan L-W, Ho I-K, Tien L-T. Effect of prenatal methadone on reinstated behavioral sensitization induced by methamphetamine in adolescent rats. Behav Brain Res. 2014;258:160–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen HH, Chiang YC, Yuan ZF, Kuo CC, Lai MD, Hung TW, et al. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats. Neuropsychiatr Dis Treat. 2015;11:609–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kongstorp M, Bogen IL, Stiris T, Andersen JM. Prenatal exposure to methadone or buprenorphine impairs cognitive performance in young adult rats. Drug Alcohol Depend. 2020;212:108008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnelly VJ, Anblagan D, Quigley A, Cabez MB, Cooper ES, Mactier H, et al. Prenatal methadone exposure is associated with altered neonatal brain development. NeuroImage Clin. 2018;18:9–14.

    Article 
    PubMed 

    Google Scholar
     

  • Walhovd KB, Watts R, Amlien I, Woodward LJ. Neural tract development of infants born to methadone-maintained mothers. Pediatr Neurol. 2012;47:1–6.

    Article 
    PubMed 

    Google Scholar
     

  • Li W, Li Q, Wang Y, Zhu J, Ye J, Yan X, et al. Methadone-induced damage to white matter integrity in methadone maintenance patients: A longitudinal self-control DTI study. Sci Rep. 2016;6:19662.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Li W, Li Q, Yang W, Zhu J, Wang W. White matter impairment in heroin addicts undergoing methadone maintenance treatment and prolonged abstinence: A preliminary DTI study. Neurosci Lett. 2011;494:49–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, Enters EK, McDowell KP, Robinson SE. The effect of prenatal exposure to methadone on neurotransmitters in neonatal rats. Dev Brain Res. 1990;57:296–8.

    Article 
    CAS 

    Google Scholar
     

  • Slotkin TA, Lau C, Bartolomé M, Seidler FJ. Alteration by methadone of catecholamine uptake and release in isolated rat adrenomedullary storage vesicles. Life Sci. 1976;19:483–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slotkin TA, Whitmore WL, Salvaggio M, Seidler FJ. Perinatal methadone addiction affects brain synaptic development of biogenic amine systems in the rat. Life Sci. 1979;24:1223–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidler FJ, Whitmore WL, Slotkin TA. Delays in growth and biochemical development of rat brain caused by maternal methadone administration: are the alterations in synaptogenesis and cellular maturation independent of reduced maternal food intake? Dev Neurosci. 1982;5:13–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda H, Miyatake M, Koshikawa N, Ochiai K, Yamada K, Kiss A, et al. Morphine modulation of thrombospondin levels in astrocytes and its implications for neurite outgrowth and synapse formation*. J Biol Chem. 2010;285:38415–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frederickson RC, Norris FH. Enkephalin-induced depression of single neurons in brain areas with opiate receptors-antagonism by naloxone. Science 1976;194:440–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicoll RA, Siggins GR, Ling N, Bloom FE, Guillemin R. Neuronal actions of endorphins and enkephalins among brain regions: a comparative microiontophoretic study. Proc Natl Acad Sci. 1977;74:2584–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winters BL, Gregoriou GC, Kissiwaa SA, Wells OA, Medagoda DI, Hermes SM, et al. Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat Commun. 2017;8:14611.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoetzer C, Kistner K, Stüber T, Wirths M, Schulze V, Doll T, et al. Methadone is a local anaesthetic-like inhibitor of neuronal Na+ channels and blocks excitability of mouse peripheral nerves. Br J Anaesth. 2015;114:110–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauser KF, Knapp PE. Opiate drugs with abuse liability hijack the endogenous opioid system to disrupt neuronal and glial maturation in the central nervous system. Front Pediatr. 2018;5:294.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall JJ, Mason JO. Mouse vs man: Organoid models of brain development & disease. Brain Res. 2019;1724:146427.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16.

    Article 
    PubMed 

    Google Scholar
     

  • Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell. 2019;25:558–569.e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trujillo CA, Muotri AR. Brain organoids and the study of neurodevelopment. Trends Mol Med. 2018;24:982–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014;345:1247125.

    Article 
    PubMed 

    Google Scholar
     

  • Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA. 2015;112:15672–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao H, Wu W, Cerf I, Zhao HW, Wang J, Negraes PD, et al. Methadone interrupts neural growth and function in human cortical organoids. Stem Cell Res. 2020;49:102065.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doberczak TM, Kandall SR, Friedmann P. Relationship between maternal methadone dosage, maternal-neonatal methadone levels, and neonatal withdrawal. Obstet Gynecol. 1993;81:936–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Drozdick J, Berghella V, Hill M, Kaltenbach K. Methadone trough levels in pregnancy. Am J Obstet Gynecol. 2002;187:1184–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon AL, Lopatko OV, Somogyi AA, Foster DJR, White JM. (R)- and (S)-methadone and buprenorphine concentration ratios in maternal and umbilical cord plasma following chronic maintenance dosing in pregnancy. Br J Clin Pharm. 2010;70:895–902.

    Article 
    CAS 

    Google Scholar
     

  • de Castro A, Jones HE, Johnson RE, Gray TR, Shakleya DM, Huestis MA. Maternal methadone dose, placental methadone concentrations, and neonatal outcomes. Clin Chem. 2011;57:449–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, et al. Modernizing reference genome assemblies. PLoS Biol. 2011;9:e1001091.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews S FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010.

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law CW, Chen Y, Shi W, Smyth GK. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:1–17.

    Article 

    Google Scholar
     

  • Harrison PF, Pattison AD, Powell DR, Beilharz TH. Topconfects: A package for confident effect sizes in differential expression analysis provides a more biologically useful ranked gene list. Genome Biol. 2019;20:1–12.

    Article 

    Google Scholar
     

  • Shen L GeneOverlap: Test and visualize gene overlaps. R package version 1.34.0. 2022.

  • Cahill KM, Huo Z, Tseng GC, Logan RW, Seney ML. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci Rep. 2018;8:9588.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plaisier SB, Taschereau R, Wong JA, Graeber TG. Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 2010;38:e169–e169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. BioRxiv. 2021:060012. https://doi.org/10.1101/060012.

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: Tool for the unification of biology. Nat Genet. 2000;25:25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbon S, Douglass E, Good BM, Unni DR, Harris NL, Mungall CJ, et al. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021;49:D325.

    Article 
    CAS 

    Google Scholar
     

  • Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinforma. 2009;10:1–7.

    Article 

    Google Scholar
     

  • Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuznetsova I, Lugmayr A, Siira SJ, Rackham O, Filipovska A. CirGO: An alternative circular way of visualising gene ontology terms. BMC Bioinforma. 2019;20:1–7.

    Article 

    Google Scholar
     

  • Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM). Hum Mutat. 2000;15:57–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43:D789–98.

    Article 
    PubMed 

    Google Scholar
     

  • Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma 2016;54:1.30.1–1.30.33.

    Article 

    Google Scholar
     

  • Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, et al. The GeneCards Suite. Pract Guid to Life Sci Databases. 2021:27–56.

  • Brown GR, Hem V, Katz KS, Ovetsky M, Wallin C, Ermolaeva O, et al. Gene: A gene-centered information resource at NCBI. Nucleic Acids Res. 2015;43:D36–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao X, Taha IN, Clauser KR, Gao YT, Naba A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res.2020;48:D1136–D1144.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hynes RO, Naba A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4:a004903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the ‘omics’ era. Matrix Biol. 2016;49:10–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naba A, Pearce OMT, Del Rosario A, Ma D, Ding H, Rajeeve V, et al. Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J Proteome Res. 2017;16:3083–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoshnoodi J, Cartailler J-P, Alvares K, Veis A, Hudson BG. Molecular recognition in the assembly of collagens: Terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem. 2006;281:38117–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer L, Schaefer RM. Proteoglycans: From structural compounds to signaling molecules. Cell Tissue Res. 2010;339:237–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, et al. CEMiTool: A Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinforma. 2018;19:1–13.

    Article 

    Google Scholar
     

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hage P, Harary F. Eccentricity and centrality in networks. Soc Netw. 1995;17:57–63.

    Article 

    Google Scholar
     

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:1–7.

    Article 

    Google Scholar
     

  • Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma. 2003;4:1–27.

    Article 

    Google Scholar
     

  • Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014;30:523–30.

    Article 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. 2022.

  • RStudio Team. RStudio: Integrated Development Environment for R. 2021.

  • Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform. 2015;16:59–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 2016;22:839–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamarre S, Frasse P, Zouine M, Labourdette D, Sainderichin E, Hu G, et al. Optimization of an RNA-Seq differential gene expression analysis depending on biological replicate number and library size. Front Plant Sci. 2018;9:108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su S, Law CW, Ah-Cann C, Asselin-Labat M-L, Blewitt ME, Ritchie ME. Glimma: interactive graphics for gene expression analysis. Bioinformatics 2017;33:2050–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: Various R Programming Tools for Plotting Data. 2022.

  • Carcamo-Orive I, Hoffman GE, Cundiff P, Beckmann ND, D’Souza SL, Knowles JW, et al. Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity. Cell Stem Cell. 2017;20:518–532.e9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volpato V, Webber C Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech. 2020;13.

  • Sell GL, Barrow SL, McAllister AK. Chapter 1 – Molecular composition of developing glutamatergic synapses. In: Rubenstein J, Rakic P, Chen B, Kwan KY, Cline HT, Cardin J. Synapse Development and Maturation. Second Ed., Academic Press; 2020. p3–32.

  • Südhof TC. Towards an understanding of synapse formation. Neuron 2018;100:276–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batool S, Raza H, Zaidi J, Riaz S, Hasan S, Syed NI. Synapse formation: From cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J Neurophysiol. 2019;121:1381–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrer-Ferrer M, Dityatev A. Shaping synapses by the neural extracellular matrix. Front Neuroanat. 2018;12:40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dankovich TM, Rizzoli SO. The synaptic extracellular matrix: Long-lived, stable, and still remarkably dynamic. Front Synaptic Neurosci. 2022;14:854956.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue B. Biology of the extracellular matrix: An overview. J Glaucoma. 2014;23:S20–S23.

    Article 
    PubMed 

    Google Scholar
     

  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiomi T, Lemaître V, D’Armiento J, Okada Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int. 2010;60:477–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharm. 2019;165:33–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21:9739.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woods A. Syndecans: Transmembrane modulators of adhesion and matrix assembly. J Clin Invest. 2001;107:935–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bornstein P, Sage EH. Matricellular proteins: Extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14:608–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts DD. Emerging functions of matricellular proteins. Cell Mol Life Sci. 2011;68:3133–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy-Ullrich JE, Sage EH. Revisiting the matricellular concept. Matrix Biol. 2014;37:1–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawyer AJ, Kyriakides TR. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization. Adv Drug Deliv Rev. 2016;97:56–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The matrix revolution: Matricellular proteins and restructuring of the cancer microenvironment. Cancer Res. 2020;80:2705–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022;815:146137.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones EV, Bouvier DS. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast. 2014;2014:321209.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eroglu C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal. 2009;3:167–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol. 2018;165–167:66–86.

    Article 
    PubMed 

    Google Scholar
     

  • Blakely PK, Hussain S, Carlin LE, Irani DN. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis. Front Neurosci. 2015;9:344.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayakumar AR, Apeksha A, Norenberg MD. Role of matricellular proteins in disorders of the central nervous system. Neurochem Res. 2017;42:858–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostrowski LE, Dutcher SK, Lo CW. Cilia and models for studying structure and function. Proc Am Thorac Soc. 2011;8:423–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green JA, Mykytyn K. Neuronal ciliary signaling in homeostasis and disease. Cell Mol Life Sci. 2010;67:3287–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol. 2012;226:172–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol. 2009;111:p39–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu W, Yao H, Dwivedi I, Negraes PD, Zhao HW, Wang J, et al. Methadone Suppresses Neuronal Function and Maturation in Human Cortical Organoids. Front Neurosci. 2020;14:593248.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith ACW, Scofield MD, Kalivas PW. The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res. 2015;1628:29–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A Glitch in the Matrix: The role of extracellular matrix remodeling in opioid use disorder. Front Integr Neurosci. 2022;16.

  • Seney ML, Kim S-M, Glausier JR, Hildebrand MA, Xue X, Zong W, et al. Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder. Biol Psychiatry. 2021;90:550–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005;120:421–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Guo W, Huang Y. Thrombospondins and synaptogenesis. Neural Regen Res. 2012;7:1737–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol. 2012;31:170–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 2014;37:83–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeger-Nukpezah T, Golemis EA. The extracellular matrix and ciliary signaling. Curr Opin Cell Biol. 2012;24:652–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins I, Wann AKT. Regulation of the Extracellular Matrix by Ciliary Machinery. Cells. 2020;9:278.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front Genet. 2019;10:317.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: