Monday, September 25, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Methylome evolution suggests lineage-dependent selection in the gastric pathogen Helicobacter pylori – Communications Biology


  • Blow, M. J. et al. The epigenomic landscape of prokaryotes. PLoS Genet. 12, e1005854 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anton, B. P. & Roberts, R. J. Beyond restriction modification: epigenomic roles of DNA methylation in prokaryotes. Annu. Rev. Microbiol 75, 129–149 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Loenen, W. A., Dryden, D. T., Raleigh, E. A. & Wilson, G. G. Type I restriction enzymes and their relatives. Nucleic Acids Res. 42, 20–44 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pingoud, A., Wilson, G. G. & Wende, W. Type II restriction endonucleases–a historical perspective and more. Nucleic Acids Res. 42, 7489–7527 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, D. N., Dryden, D. T. & Bheemanaik, S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res. 42, 45–55 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hooi, J. K. Y. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Malfertheiner, P. et al. Helicobacter pylori infection. Nat. Rev. Dis. Prim. 9, 19 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ailloud, F., Estibariz, I. & Suerbaum, S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol. Rev. 45, https://doi.org/10.1093/femsre/fuaa042 (2021).

  • Suerbaum, S. & Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 5, 441–452 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Romero, M. A., Cota, I. & Casadesus, J. DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, R., Mukhopadhyay, A. K., Ghosh, P. & Rao, D. N. Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS ONE 7, e42303 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S. et al. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res. 46, 3429–3445 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estibariz, I. et al. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res. 47, 2336–2348 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yano, H. et al. Networking and specificity-changing DNA methyltransferases in Helicobacter pylori. Front. Microbiol. 11, 1628 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, P. H., Touchon, M. & Rocha, E. P. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rusinov, I., Ershova, A., Karyagina, A., Spirin, S. & Alexeevski, A. Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes. BMC Genomics 16, 1084 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasu, K. & Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 77, 53–72 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q., Morgan, R. D., Roberts, R. J. & Blaser, M. J. Identification of Type II restriction and modification systems in Helicobacter pylori reveals their substantial diversity among strains. Proc. Natl Acad. Sci. USA 97, 9671–9676 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krebes, J. et al. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 42, 2415–2432 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nell, S. et al. Genome and methylome variation in Helicobacter pylori with a cag Pathogenicity Island during early stages of human infection. Gastroenterology 154, 612–623 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furuta, Y. et al. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet. 10, e1004272 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W. C. et al. The complete methylome of Helicobacter pylori UM032. BMC Genomics 16, 424 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estibariz, I. et al. In vivo genome and methylome adaptation of cag-negative Helicobacter pylori during experimental human infection. mBio 11, e01803–20 (2020).

  • Gann, A. A., Campbell, A. J., Collins, J. F., Coulson, A. F. & Murray, N. E. Reassortment of DNA recognition domains and the evolution of new specificities. Mol. Microbiol. 1, 13–22 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimitriu, T., Szczelkun, M. D. & Westra, E. R. Evolutionary ecology and interplay of prokaryotic innate and adaptive immune systems. Curr. Biol. 30, R1189–R1202 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuta, Y. & Kobayashi, I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 40, 9218–9232 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in Archaea and Bacteria. Annu Rev. Microbiol 71, 233–261 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, B., Epp, N., Wijaya, W., Mrazek, J. & Hoover, T. R. Methylation motifs in promoter sequences may contribute to the maintenance of a conserved (m5)C methyltransferase in Helicobacter pylori. Microorganisms 9, https://doi.org/10.3390/microorganisms9122474 (2021).

  • Yamaoka, Y. et al. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: Studies in four different countries. J. Clin. Microbiol. 37, 2274–2279 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q. et al. Functional analysis of iceA1, a CATG-recognizing restriction endonuclease gene in Helicobacter pylori. Nucleic Acids Res 30, 3839–3847 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kita, K., Tsuda, J. & Nakai, S. Y. C.EcoO109I, a regulatory protein for production of EcoO109I restriction endonuclease, specifically binds to and bends DNA upstream of its translational start site. Nucleic Acids Res. 30, 3558–3565 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negri, A. et al. Regulator-dependent temporal dynamics of a restriction-modification system’s gene expression upon entering new host cells: single-cell and population studies. Nucleic Acids Res. 49, 3826–3840 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srikhanta, Y. N. et al. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS ONE 6, e27569 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srikhanta, Y. N. et al. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci. Rep. 7, 16140 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bzymek, M. & Lovett, S. T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc. Natl Acad. Sci. USA 98, 8319–8325 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuta, Y., Abe, K. & Kobayashi, I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res. 38, 2428–2443 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baltrus, D. A. & Guillemin, K. Multiple phases of competence occur during the Helicobacter pylori growth cycle. FEMS Microbiol. Lett. 255, 148–155 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corbinais, C. et al. ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci. Rep. 7, 41495 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morelli, G. et al. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet. 6, e1001036 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennemann, L. et al. Helicobacter pylori genome evolution during human infection. Proc. Natl Acad. Sci. USA 108, 5033–5038 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Didelot, X. et al. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc. Natl Acad. Sci. USA 110, 13880–13885 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rusinov, I. S., Ershova, A. S., Karyagina, A. S., Spirin, S. A. & Alexeevski, A. V. Comparison of methods of detection of exceptional sequences in prokaryotic genomes. Biochem. (Mosc.) 83, 129–139 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Burge, C., Campbell, A. M. & Karlin, S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc. Natl Acad. Sci. USA 89, 1358–1362 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falush, D. et al. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582–1585 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olbermann, P. et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6, e1001069 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moodley, Y. et al. Age of the association between Helicobacter pylori and man. PLoS Pathog. 8, e1002693 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vale, F. F. & Vitor, J. M. Genomic methylation: a tool for typing Helicobacter pylori isolates. Appl Environ. Microbiol. 73, 4243–4249 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vale, F. F., Megraud, F. & Vitor, J. M. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration. BMC Microbiol. 9, 193 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlin, S., Burge, C. & Campbell, A. M. Statistical analyses of counts and distributions of restriction sites in DNA sequences. Nucleic Acids Res. 20, 1363–1370 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gelfand, M. S. & Koonin, E. V. Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res. 25, 2430–2439 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, E. P. C., Danchin, A. & Viari, A. Evolutionary role of Restriction/Modification systems as revealed by comparative genome analysis. Genome Res. 11, 946–958 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figueiredo, C. et al. Genetic organization and heterogeneity of the iceA locus of Helicobacter pylori. Gene 246, 59–68 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, J. C., Rideout, W. M. 3rd & Jones, P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22, 972–976 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naito, T., Kusano, K. & Kobayashi, I. Selfish behavior of Restriction-Modification systems. Science 267, 897–899 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray, N. E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412–434 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuta, Y., Kawai, M., Uchiyama, I. & Kobayashi, I. Domain movement within a gene: a novel evolutionary mechanism for protein diversification. PLoS ONE 6, e18819 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, M. C. et al. A cytosine methyltransferase modulates the cell envelope stress response in the cholera pathogen. PLoS Genet. 11, e1005739 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haakonsen, D. L., Yuan, A. H. & Laub, M. T. The bacterial cell cycle regulator GcrA is a σ70 cofactor that drives gene expression from a subset of methylated promoters. Genes Dev. 29, 2272–2286 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahramanoglou, C. et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat. Commun. 3, 886 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Callens, M., Pradier, L., Finnegan, M., Rose, C. & Bedhomme, S. Read between the lines: diversity of nontranslational selection pressures on local codon usage. Genome Biol. Evol. 13, https://doi.org/10.1093/gbe/evab097 (2021).

  • Munoz, A. B., Stepanian, J., Trespalacios, A. A. & Vale, F. F. Bacteriophages of Helicobacter pylori. Front. Microbiol. 11, 549084 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vale, F. F. et al. Dormant phages of Helicobacter pylori reveal distinct populations in Europe. Sci. Rep. 5, 14333 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vale, F. F. et al. Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins. Sci. Rep. 7, 42471 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balzarolo, M. et al. m6A methylation potentiates cytosolic dsDNA recognition in a sequence-specific manner. Open Biol. 11, 210030 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchiya, H., Matsuda, T., Harashima, H. & Kamiya, H. Cytokine induction by a bacterial DNA-specific modified base. Biochem. Biophys. Res. Commun. 326, 777–781 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorpe, H. A. et al. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat. Commun. 13, 6842 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorell, K. et al. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genet. 13, e1006546 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munoz-Ramirez, Z. Y. et al. A 500-year tale of co-evolution, adaptation, and virulence: Helicobacter pylori in the Americas. ISME J. 15, 78–92 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the Tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naito, M. et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130, 1181–1190 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, T. et al. Differential mechanisms for SHP2 binding and activation are exploited by geographically distinct Helicobacter pylori CagA oncoproteins. Cell Rep. 20, 2876–2890 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30, 138–152 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nell, S. et al. Recent acquisition of Helicobacter pylori by Baka pygmies. PLoS Genet. 9, e1003775 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moodley, Y. et al. Helicobacter pylori’s historical journey through Siberia and the Americas. Proc Natl Acad Sci USA 118, https://doi.org/10.1073/pnas.2015523118 (2021).

  • Achtman, M. et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 32, 459–470 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 43, D298–D299 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pevzner, P. A., Borodovsky, M. & Mironov, A. A. Linguistics of nucleotide sequences. I: The significance of deviations from mean statistical characteristics and prediction of the frequencies of occurrence of words. J. Biomol. Struct. Dyn. 6, 1013–1026 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, https://doi.org/10.1093/gigascience/giab008 (2021).

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: