Blow, M. J. et al. The epigenomic landscape of prokaryotes. PLoS Genet. 12, e1005854 (2016).
Anton, B. P. & Roberts, R. J. Beyond restriction modification: epigenomic roles of DNA methylation in prokaryotes. Annu. Rev. Microbiol 75, 129–149 (2021).
Loenen, W. A., Dryden, D. T., Raleigh, E. A. & Wilson, G. G. Type I restriction enzymes and their relatives. Nucleic Acids Res. 42, 20–44 (2014).
Pingoud, A., Wilson, G. G. & Wende, W. Type II restriction endonucleases–a historical perspective and more. Nucleic Acids Res. 42, 7489–7527 (2014).
Rao, D. N., Dryden, D. T. & Bheemanaik, S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res. 42, 45–55 (2014).
Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).
Hooi, J. K. Y. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).
Malfertheiner, P. et al. Helicobacter pylori infection. Nat. Rev. Dis. Prim. 9, 19 (2023).
Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).
Ailloud, F., Estibariz, I. & Suerbaum, S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol. Rev. 45, https://doi.org/10.1093/femsre/fuaa042 (2021).
Suerbaum, S. & Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 5, 441–452 (2007).
Sanchez-Romero, M. A., Cota, I. & Casadesus, J. DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16 (2015).
Kumar, R., Mukhopadhyay, A. K., Ghosh, P. & Rao, D. N. Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS ONE 7, e42303 (2012).
Kumar, S. et al. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res. 46, 3429–3445 (2018).
Estibariz, I. et al. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res. 47, 2336–2348 (2019).
Yano, H. et al. Networking and specificity-changing DNA methyltransferases in Helicobacter pylori. Front. Microbiol. 11, 1628 (2020).
Oliveira, P. H., Touchon, M. & Rocha, E. P. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).
Rusinov, I., Ershova, A., Karyagina, A., Spirin, S. & Alexeevski, A. Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes. BMC Genomics 16, 1084 (2015).
Vasu, K. & Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 77, 53–72 (2013).
Xu, Q., Morgan, R. D., Roberts, R. J. & Blaser, M. J. Identification of Type II restriction and modification systems in Helicobacter pylori reveals their substantial diversity among strains. Proc. Natl Acad. Sci. USA 97, 9671–9676 (2000).
Krebes, J. et al. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 42, 2415–2432 (2014).
Nell, S. et al. Genome and methylome variation in Helicobacter pylori with a cag Pathogenicity Island during early stages of human infection. Gastroenterology 154, 612–623 (2018).
Furuta, Y. et al. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet. 10, e1004272 (2014).
Lee, W. C. et al. The complete methylome of Helicobacter pylori UM032. BMC Genomics 16, 424 (2015).
Estibariz, I. et al. In vivo genome and methylome adaptation of cag-negative Helicobacter pylori during experimental human infection. mBio 11, e01803–20 (2020).
Gann, A. A., Campbell, A. J., Collins, J. F., Coulson, A. F. & Murray, N. E. Reassortment of DNA recognition domains and the evolution of new specificities. Mol. Microbiol. 1, 13–22 (1987).
Dimitriu, T., Szczelkun, M. D. & Westra, E. R. Evolutionary ecology and interplay of prokaryotic innate and adaptive immune systems. Curr. Biol. 30, R1189–R1202 (2020).
Furuta, Y. & Kobayashi, I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 40, 9218–9232 (2012).
Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in Archaea and Bacteria. Annu Rev. Microbiol 71, 233–261 (2017).
Meng, B., Epp, N., Wijaya, W., Mrazek, J. & Hoover, T. R. Methylation motifs in promoter sequences may contribute to the maintenance of a conserved (m5)C methyltransferase in Helicobacter pylori. Microorganisms 9, https://doi.org/10.3390/microorganisms9122474 (2021).
Yamaoka, Y. et al. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: Studies in four different countries. J. Clin. Microbiol. 37, 2274–2279 (1999).
Xu, Q. et al. Functional analysis of iceA1, a CATG-recognizing restriction endonuclease gene in Helicobacter pylori. Nucleic Acids Res 30, 3839–3847 (2002).
Kita, K., Tsuda, J. & Nakai, S. Y. C.EcoO109I, a regulatory protein for production of EcoO109I restriction endonuclease, specifically binds to and bends DNA upstream of its translational start site. Nucleic Acids Res. 30, 3558–3565 (2002).
Negri, A. et al. Regulator-dependent temporal dynamics of a restriction-modification system’s gene expression upon entering new host cells: single-cell and population studies. Nucleic Acids Res. 49, 3826–3840 (2021).
Srikhanta, Y. N. et al. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS ONE 6, e27569 (2011).
Srikhanta, Y. N. et al. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci. Rep. 7, 16140 (2017).
Bzymek, M. & Lovett, S. T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc. Natl Acad. Sci. USA 98, 8319–8325 (2001).
Kobayashi, I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756 (2001).
Furuta, Y., Abe, K. & Kobayashi, I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res. 38, 2428–2443 (2010).
Baltrus, D. A. & Guillemin, K. Multiple phases of competence occur during the Helicobacter pylori growth cycle. FEMS Microbiol. Lett. 255, 148–155 (2006).
Corbinais, C. et al. ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci. Rep. 7, 41495 (2017).
Morelli, G. et al. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet. 6, e1001036 (2010).
Kennemann, L. et al. Helicobacter pylori genome evolution during human infection. Proc. Natl Acad. Sci. USA 108, 5033–5038 (2011).
Didelot, X. et al. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc. Natl Acad. Sci. USA 110, 13880–13885 (2013).
Rusinov, I. S., Ershova, A. S., Karyagina, A. S., Spirin, S. A. & Alexeevski, A. V. Comparison of methods of detection of exceptional sequences in prokaryotic genomes. Biochem. (Mosc.) 83, 129–139 (2018).
Burge, C., Campbell, A. M. & Karlin, S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc. Natl Acad. Sci. USA 89, 1358–1362 (1992).
Falush, D. et al. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582–1585 (2003).
Olbermann, P. et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6, e1001069 (2010).
Moodley, Y. et al. Age of the association between Helicobacter pylori and man. PLoS Pathog. 8, e1002693 (2012).
Vale, F. F. & Vitor, J. M. Genomic methylation: a tool for typing Helicobacter pylori isolates. Appl Environ. Microbiol. 73, 4243–4249 (2007).
Vale, F. F., Megraud, F. & Vitor, J. M. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration. BMC Microbiol. 9, 193 (2009).
Karlin, S., Burge, C. & Campbell, A. M. Statistical analyses of counts and distributions of restriction sites in DNA sequences. Nucleic Acids Res. 20, 1363–1370 (1992).
Gelfand, M. S. & Koonin, E. V. Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res. 25, 2430–2439 (1997).
Rocha, E. P. C., Danchin, A. & Viari, A. Evolutionary role of Restriction/Modification systems as revealed by comparative genome analysis. Genome Res. 11, 946–958 (2001).
Figueiredo, C. et al. Genetic organization and heterogeneity of the iceA locus of Helicobacter pylori. Gene 246, 59–68 (2000).
Shen, J. C., Rideout, W. M. 3rd & Jones, P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22, 972–976 (1994).
Naito, T., Kusano, K. & Kobayashi, I. Selfish behavior of Restriction-Modification systems. Science 267, 897–899 (1995).
Murray, N. E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412–434 (2000).
Furuta, Y., Kawai, M., Uchiyama, I. & Kobayashi, I. Domain movement within a gene: a novel evolutionary mechanism for protein diversification. PLoS ONE 6, e18819 (2011).
Chao, M. C. et al. A cytosine methyltransferase modulates the cell envelope stress response in the cholera pathogen. PLoS Genet. 11, e1005739 (2015).
Haakonsen, D. L., Yuan, A. H. & Laub, M. T. The bacterial cell cycle regulator GcrA is a σ70 cofactor that drives gene expression from a subset of methylated promoters. Genes Dev. 29, 2272–2286 (2015).
Kahramanoglou, C. et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat. Commun. 3, 886 (2012).
Callens, M., Pradier, L., Finnegan, M., Rose, C. & Bedhomme, S. Read between the lines: diversity of nontranslational selection pressures on local codon usage. Genome Biol. Evol. 13, https://doi.org/10.1093/gbe/evab097 (2021).
Munoz, A. B., Stepanian, J., Trespalacios, A. A. & Vale, F. F. Bacteriophages of Helicobacter pylori. Front. Microbiol. 11, 549084 (2020).
Vale, F. F. et al. Dormant phages of Helicobacter pylori reveal distinct populations in Europe. Sci. Rep. 5, 14333 (2015).
Vale, F. F. et al. Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins. Sci. Rep. 7, 42471 (2017).
Balzarolo, M. et al. m6A methylation potentiates cytosolic dsDNA recognition in a sequence-specific manner. Open Biol. 11, 210030 (2021).
Tsuchiya, H., Matsuda, T., Harashima, H. & Kamiya, H. Cytokine induction by a bacterial DNA-specific modified base. Biochem. Biophys. Res. Commun. 326, 777–781 (2005).
Thorpe, H. A. et al. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat. Commun. 13, 6842 (2022).
Thorell, K. et al. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genet. 13, e1006546 (2017).
Munoz-Ramirez, Z. Y. et al. A 500-year tale of co-evolution, adaptation, and virulence: Helicobacter pylori in the Americas. ISME J. 15, 78–92 (2021).
Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the Tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).
Naito, M. et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130, 1181–1190 (2006).
Hayashi, T. et al. Differential mechanisms for SHP2 binding and activation are exploited by geographically distinct Helicobacter pylori CagA oncoproteins. Cell Rep. 20, 2876–2890 (2017).
Zhou, Z. et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30, 138–152 (2020).
Nell, S. et al. Recent acquisition of Helicobacter pylori by Baka pygmies. PLoS Genet. 9, e1003775 (2013).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Moodley, Y. et al. Helicobacter pylori’s historical journey through Siberia and the Americas. Proc Natl Acad Sci USA 118, https://doi.org/10.1073/pnas.2015523118 (2021).
Achtman, M. et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 32, 459–470 (1999).
Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 43, D298–D299 (2015).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Pevzner, P. A., Borodovsky, M. & Mironov, A. A. Linguistics of nucleotide sequences. I: The significance of deviations from mean statistical characteristics and prediction of the frequencies of occurrence of words. J. Biomol. Struct. Dyn. 6, 1013–1026 (1989).
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, https://doi.org/10.1093/gigascience/giab008 (2021).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290 (2004).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).