Sunday, October 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets – Signal Transduction and Targeted Therapy


  • Arcuri, C., Mecca, C., Bianchi, R., Giambanco, I. & Donato, R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci. 10, 191 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sarlus, H. & Heneka, M. T. Microglia in Alzheimer’s disease. J. Clin. Invest. 127, 3240–3249 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Cserep, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Provenzano, F., Perez, M. J. & Deleidi, M. Redefining microglial identity in health and disease at single-cell resolution. Trends Mol. Med. 27, 47–59 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e386 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bottcher, C. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22, 78–90 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Guo, S., Wang, H. & Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci. 14, 815347 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Savage, J. C., Carrier, M. & Tremblay, M. E. Morphology of microglia across contexts of health and disease. Methods Mol. Biol. 2034, 13–26 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouvier, D. S. et al. High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci. Rep. 6, 24544 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e1217 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 832–847 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerrits, E. et al. Distinct amyloid-beta and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 141, 681–696 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mathys, H. et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sierra, A., Paolicelli, R. C. & Kettenmann, H. Cien anos de microglia: milestones in a century of microglial research. Trends Neurosci. 42, 778–792 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rı´o-Hortega, P. El “Tercer Elemento” de los Centros Nerviosos. I. La Microglı´a en Estado Normal, Boletı´n de la Sociedad Espan˜ola de Biologı´a VIII, pp. 67–82, (in Spanish). (1919).

  • Rı´o-Hortega, P. El “Tercer Elemento de los Centros Nerviosos”. II. Intervencio´n de la Microglı´a en los Procesos Patolo´gicos (Ce´lulas en Bastoncitoy Cuerpos Gra´nuloadiposos), Boletı´n de la Sociedad Espan˜ ola de Biologı´a VIII, pp. 91–103, (in Spanish). (1919).

  • Rı´o-Hortega, P. El “Tercer Elemento” de los Centros Nerviosos. III. Naturaleza Probable de la Microglı´a, Boletı´n de la Sociedad Espan˜ ola de Biologı´a VIII, pp. 108–121, (in Spanish). (1919).

  • Rı´o-Hortega, P. El “Tercer Elemento de los Centros Nerviosos”. IV. Poder Fagocitarioy Movilidad de la Microglı´a, Boletı´n de la Sociedad Espan˜ ola de Biologı´a VIII, pp. 154–171, in Spanish. (1919).

  • Sierra, A. et al. The “Big-Bang” for modern glial biology: Translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64, 1801–1840 (2016).

  • Kershman, K. Genesis of microglia in the human brain. Arch. Neurol. Psychiatr. 41, 24–50 (1939).

    Article 

    Google Scholar
     

  • Blinzinger, K. & Kreutzberg, G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. Mikros. Anat. 85, 145–157 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Ibrahim, M. Z., Khreis, Y. & Koshayan, D. S. The histochemical identification of microglia. J. Neurol. Sci. 22, 211–233 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giulian, D. & Baker, T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178 (1986).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hetier, E. et al. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J. Neurosci. Res. 21, 391–397 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawada, M., Kondo, N., Suzumura, A. & Marunouchi, T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 491, 394–397 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kettenmann, H., Hoppe, D., Gottmann, K., Banati, R. & Kreutzberg, G. Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J. Neurosci. Res. 26, 278–287 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bocchini, V. et al. An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31, 616–621 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vowinckel, E. et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurosci. Res. 50, 345–353 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 57, 1–9 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, H., Clarke, B. E. & Patani, R. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Prog. Neurobiol. 200, 101973 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Borst, K., Dumas, A. A. & Prinz, M. Microglia: immune and non-immune functions. Immunity 54, 2194–2208 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miron, V. E. & Priller, J. Investigating microglia in health and disease: challenges and opportunities. Trends Immunol. 41, 785–793 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tejera, D. & Heneka, M. T. Microglia in neurodegenerative disorders. Methods Mol. Biol. 2034, 57–67 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohlen, C. J., Friedman, B. A., Dejanovic, B. & Sheng, M. Microglia in brain development, homeostasis, and neurodegeneration. Annu. Rev. Genet. 53, 263–288 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palis, J. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590, 3965–3974 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E., Eo, J. C., Lee, C. & Yu, J. W. Distinct features of brain-resident macrophages: microglia and non-parenchymal brain macrophages. Mol. Cells 44, 281–291 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verney, C., Monier, A., Fallet-Bianco, C. & Gressens, P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J. Anat. 217, 436–448 (2010).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schlegelmilch, T., Henke, K. & Peri, F. Microglia in the developing brain: from immunity to behaviour. Curr. Opin. Neurobiol. 21, 5–10 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnoux, I. et al. Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61, 1582–1594 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Walls, J. R., Coultas, L., Rossant, J. & Henkelman, R. M. Three-dimensional analysis of vascular development in the mouse embryo. PLoS ONE 3, e2853 (2008).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Stremmel, C. et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9, 75 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Swinnen, N. et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61, 150–163 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • De, S. et al. Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development 145, dev152306 (2018).

  • Monier, A. et al. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J. Neuropathol. Exp. Neurol. 66, 372–382 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Minten, C., Terry, R., Deffrasnes, C., King, N. J. & Campbell, I. L. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS ONE 7, e49851 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rosenbauer, F. & Tenen, D. G. Transcription factors in myeloid development: balancing differentiation with transformation. Nat. Rev. Immunol. 7, 105–117 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zusso, M. et al. Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J. Neurosci. 32, 11285–11298 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Huang, G. et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat. Genet. 40, 51–60 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chitu, V., Gokhan, S., Nandi, S., Mehler, M. F. & Stanley, E. R. Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci. 39, 378–393 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Elmore, M. R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Butovsky, O. et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tay, T. L., Sagar, Dautzenberg, J., Grun, D. & Prinz, M. Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathol. Commun. 6, 87 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Park, K. W. et al. Delayed infiltration of peripheral monocyte contributes to phagocytosis and transneuronal degeneration in chronic stroke. Stroke 53, 2377–2388 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fumagalli, S., Perego, C., Pischiutta, F., Zanier, E. R. & De Simoni, M. G. The ischemic environment drives microglia and macrophage function. Front. Neurol. 6, 81 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K. & Tremblay, M. E. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595, 1929–1945 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greter, M. & Merad, M. Regulation of microglia development and homeostasis. Glia 61, 121–127 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fourgeaud, L. et al. TAM receptors regulate multiple features of microglial physiology. Nature 532, 240–244 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liu, Y. J. et al. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J. Neurosci. 41, 1274–1287 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rauti, R. et al. BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol. Brain 13, 43 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Saw, G. et al. Epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway involved in long-term potentiation and synaptic plasticity in rats. Glia 68, 656–669 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, Y. et al. The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha. Brain Behav. Immun. 24, 874–880 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roumier, A. et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J. Neurosci. 24, 11421–11428 (2004).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Koffie, R. M., Hyman, B. T. & Spires-Jones, T. L. Alzheimer’s disease: synapses gone cold. Mol. Neurodegener. 6, 63 (2011).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wilton, D. K., Dissing-Olesen, L. & Stevens, B. Neuron-glia signaling in synapse elimination. Annu Rev. Neurosci. 42, 107–127 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shi, Q. et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl. Med. 9, eaaf6295 (2017).

  • Fracassi, A. et al. TREM2-induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer’s neuropathology. Brain Pathol. 33, e13108 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109, 1657–1674.e1657 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Frost, J. L. & Schafer, D. P. Microglia: architects of the developing nervous system. Trends Cell Biol. 26, 587–597 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Marin-Teva, J. L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Arno, B. et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merlini, M. et al. Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat. Neurosci. 24, 19–23 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, A. K. et al. Selective activation of microglia facilitates synaptic strength. J. Neurosci. 35, 4552–4570 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lyons, A. et al. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci. 27, 8309–8313 (2007).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke. J. Neuroinflammation 17, 171 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dissing-Olesen, L. et al. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34, 10511–10527 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Eyo, U. B. et al. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J. Neurosci. 34, 10528–10540 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ransohoff, R. M. & Brown, M. A. Innate immunity in the central nervous system. J. Clin. Investig. 122, 1164–1171 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jack, C. S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pascual, O., Ben Achour, S., Rostaing, P., Triller, A. & Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl Acad. Sci. USA 109, E197–E205 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirkley, K. S., Popichak, K. A., Afzali, M. F., Legare, M. E. & Tjalkens, R. B. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J. Neuroinflammation 14, 99 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Norden, D. M., Fenn, A. M., Dugan, A. & Godbout, J. P. TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62, 881–895 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bianco, F. et al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J. Immunol. 174, 7268–7277 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y. & Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34, 2231–2243 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nemes-Baran, A. D., White, D. R. & DeSilva, T. M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32, 108047 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hamilton, S. P. & Rome, L. H. Stimulation of in vitro myelin synthesis by microglia. Glia 11, 326–335 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 2022 Alzheimer’s disease facts and figures. Alzheimers Dement 18, 700-789 (2022).

  • Duyckaerts, C., Delatour, B. & Potier, M. C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118, 5–36 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener. 12, 43 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dal Bianco, A. et al. Multiple sclerosis and Alzheimer’s disease. Ann. Neurol. 63, 174–183 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sastre, M., Klockgether, T. & Heneka, M. T. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci. 24, 167–176 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B. & Hong, J. S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1–7 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rupprecht, R. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 9, 971–988 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turkheimer, F. E. et al. The methodology of TSPO imaging with positron emission tomography. Biochem. Soc. Trans. 43, 586–592 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nutma, E. et al. Cellular sources of TSPO expression in healthy and diseased brain. Eur. J. Nucl. Med. Mol. Imaging 49, 146–163 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Guilarte, T. R., Rodichkin, A. N., McGlothan, J. L., Acanda De La Rocha, A. M. & Azzam, D. J. Imaging neuroinflammation with TSPO: A new perspective on the cellular sources and subcellular localization. Pharmacol. Ther. 234, 108048 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Best, L., Ghadery, C., Pavese, N., Tai, Y. F. & Strafella, A. P. New and old TSPO PET radioligands for imaging brain microglial activation in neurodegenerative disease. Curr. Neurol. Neurosci. Rep. 19, 24 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm. Sin. B 11, 373–393 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passamonti, L. et al. Neuroinflammation and functional connectivity in alzheimer’s disease: interactive influences on cognitive performance. J. Neurosci. 39, 7218–7226 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokokura, M. et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 38, 343–351 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suridjan, I. et al. In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol. Psychiatry 20, 1579–1587 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fan, Z. et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. 11, 608–621.e607 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Yasuno, F. et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(1)(1)C]DAA1106. Psychiatry Res. 203, 67–74 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okello, A. et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72, 56–62 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Parbo, P. et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain 140, 2002–2011 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Parbo, P. et al. Does inflammation precede tau aggregation in early Alzheimer’s disease? A PET study. Neurobiol. Dis. 117, 211–216 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dani, M. et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141, 2740–2754 (2018).

    PubMed 

    Google Scholar
     

  • Nguyen, A. T. et al. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neuropathol. 140, 477–493 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Smith, A. M. et al. Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology. Acta Neuropathol. 143, 75–91 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heckmann, B. L. et al. LC3-associated endocytosis facilitates beta-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178, 536–551.e514 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Nogo receptor impairs the clearance of fibril amyloid-beta by microglia and accelerates Alzheimer’s-like disease progression. Aging Cell 20, e13515 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Singh, N. et al. BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. Sci. Adv. 8, eabo1286 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Singh, N., Das, B., Zhou, J., Hu, X. & Yan, R. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance. Sci. Adv. 8, eabo3610 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • McAlpine, C. S. et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 595, 701–706 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fitz, N. F. et al. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat. Commun. 12, 3416 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat. Immunol. 22, 586–594 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Errico, P. et al. Microglia contribute to the propagation of Abeta into unaffected brain tissue. Nat. Neurosci. 25, 20–25 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Microglial NF-kappaB drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 13, 1969 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pomilio, C. et al. Microglial autophagy is impaired by prolonged exposure to beta-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients. Geroscience 42, 613–632 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Xu, Y., Propson, N. E., Du, S., Xiong, W. & Zheng, H. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc. Natl Acad. Sci. USA 118, e2023418118 (2021).

  • Trotta, T. et al. Microglia-derived extracellular vesicles in Alzheimer’s Disease: a double-edged sword. Biochem. Pharmacol. 148, 184–192 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clayton, K. et al. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol. Neurodegener. 16, 18 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ruan, Z. et al. P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice. Mol. Neurodegener. 15, 47 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jay, T. R., von Saucken, V. E. & Landreth, G. E. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12, 56 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roussos, P. et al. The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer’s dementia. Alzheimers Dement. 11, 1163–1170 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, S. C. et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum. Mol. Genet. 23, 5838–5846 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jiang, T. et al. A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol. Aging 42, 217 e211–213 (2016).

    Article 

    Google Scholar
     

  • Olive, C. et al. Examination of the effect of rare variants in TREM2, ABI3, and PLCG2 in LOAD through multiple phenotypes. J. Alzheimers Dis. 77, 1469–1482 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Parhizkar, S. et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci. 22, 191–204 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schlepckow, K. et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol. Med. 12, e11227 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. 217, e20200785 (2020).

  • Zhao, P. et al. A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer’s disease. Sci. Transl. Med. 14, eabq0095 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammond, T. R., Marsh, S. E. & Stevens, B. Immune signaling in neurodegeneration. Immunity 50, 955–974 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gratuze, M. et al. Activated microglia mitigate Abeta-associated tau seeding and spreading. J. Exp. Med. 218, e20210542 (2021).

  • Leyns, C. E. G. et al. TREM2 function impedes tau seeding in neuritic plaques. Nat. Neurosci. 22, 1217–1222 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lee, S. H. et al. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by beta-amyloid pathology. Neuron 109, 1283–1301.e1286 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl Acad. Sci. USA 114, 11524–11529 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sayed, F. A. et al. Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc. Natl Acad. Sci. USA 115, 10172–10177 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schoch, K. M. et al. Acute Trem2 reduction triggers increased microglial phagocytosis, slowing amyloid deposition in mice. Proc. Natl Acad. Sci. USA 118, e2100356118 (2021).

  • Gratuze, M. et al. Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration. J. Clin. Invest. 130, 4954–4968 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bemiller, S. M. et al. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12, 74 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wunderlich, P. et al. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and gamma-secretase-dependent intramembranous cleavage. J. Biol. Chem. 288, 33027–33036 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Piccio, L. et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131, 3081–3091 (2008).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Piccio, L. et al. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol. 131, 925–933 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Heslegrave, A. et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol. Neurodegener. 11, 3 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ewers, M. et al. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. EMBO Mol. Med. 12, e12308 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ewers, M. et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci. Transl. Med. 11, eaav6221 (2019).

  • Zhong, L. et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat. Commun. 10, 1365 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhong, L. et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J. Exp. Med. 214, 597–607 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vilalta, A. et al. Wild-type sTREM2 blocks Abeta aggregation and neurotoxicity, but the Alzheimer’s R47H mutant increases Abeta aggregation. J. Biol. Chem. 296, 100631 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schlepckow, K. et al. An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Mol. Med. 9, 1356–1365 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Thornton, P. et al. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant. EMBO Mol. Med. 9, 1366–1378 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Song, W. M. et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med. 215, 745–760 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Moutinho, M. et al. TREM2 splice isoforms generate soluble TREM2 species that disrupt long-term potentiation. Genome Med. 15, 11 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Young, J. E. & Jayadev, S. Neighborhood matters: altered lipid metabolism in APOE4 microglia causes problems for neurons. Cell Stem Cell 29, 1159–1160 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrielli, M. et al. Microglial large extracellular vesicles propagate early synaptic dysfunction in Alzheimer’s disease. Brain 145, 2849–2868 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Merlini, M. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101, 1099–1108.e1096 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fawcett, J. W., Oohashi, T. & Pizzorusso, T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20, 451–465 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crapser, J. D. et al. Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine 58, 102919 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Balestrino, R. & Schapira, A. H. V. Parkinson disease. Eur. J. Neurol. 27, 27–42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, S. et al. Prevalence of Parkinson’s disease: a community-based study in China. Mov. Disord. 36, 2940–2944 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bras, I. C. & Outeiro, T. F. Alpha-synuclein: mechanisms of release and pathology progression in synucleinopathies. Cells 10, 375 (2021).

  • Stefanis, L. alpha-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399 (2012).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D. & Mandel, J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol. 26, S1–S58 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Chia, S. J., Tan, E. K. & Chao, Y. X. Historical Perspective: Models of Parkinson’s Disease. Int. J. Mol. Sci. 21, 2464 (2020).

  • Janda, E., Boi, L. & Carta, A. R. Microglial phagocytosis and its regulation: a therapeutic target in Parkinson’s disease? Front. Mol. Neurosci. 11, 144 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunot, S. et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72, 355–363 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knott, C., Stern, G. & Wilkin, G. P. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci. 16, 724–739 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doorn, K. J. et al. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol. Commun. 2, 90 (2014).

    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smajic, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145, 964–978 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, Y. Editorial: microglial polarization in the pathogenesis and therapeutics of neurodegenerative diseases. Front. Aging Neurosci. 10, 154 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ransohoff, R. M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uriarte Huarte, O. et al. Single-cell transcriptomics and in situ morphological analyses reveal microglia heterogeneity across the nigrostriatal pathway. Front. Immunol. 12, 639613 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liu, Y. J. et al. Cspg4(high) microglia contribute to microgliosis during neurodegeneration. Proc. Natl Acad. Sci. USA 120, e2210643120 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Imamura, K. et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 106, 518–526 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagatsu, T., Mogi, M., Ichinose, H. & Togari, A. Cytokines in Parkinson’s disease. J. Neural Transm. Suppl. 58, 143–151 (2000).


    Google Scholar
     

  • Schroder, J. B. et al. Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front. Neurol. 9, 1081 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gordon, R. et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066 (2018).

  • Haque, M. E. et al. Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov. Disord. 35, 20–33 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari, C. C. & Tarelli, R. Parkinson’s disease and systemic inflammation. Parkinsons Dis. 2011, 436813 (2011).

    PubMed Central 
    PubMed 

    Google Scholar
     

  • Harms, A. S., Ferreira, S. A. & Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 141, 527–545 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pey, P., Pearce, R. K., Kalaitzakis, M. E., Griffin, W. S. & Gentleman, S. M. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. Commun. 2, 21 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tentillier, N. et al. Anti-inflammatory modulation of microglia via CD163-targeted glucocorticoids protects dopaminergic neurons in the 6-OHDA Parkinson’s disease model. J. Neurosci. 36, 9375–9390 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gliem, M., Schwaninger, M. & Jander, S. Protective features of peripheral monocytes/macrophages in stroke. Biochim. Biophys. Acta 1862, 329–338 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, S. et al. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci. Rep. 8, 13276 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liu, S. Y. et al. Brain microglia activation and peripheral adaptive immunity in Parkinson’s disease: a multimodal PET study. J. Neuroinflammation 19, 209 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tieu, K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 1, a009316 (2011).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • McGeer, P. L. & McGeer, E. G. Glial reactions in Parkinson’s disease. Mov. Disord. 23, 474–483 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Marinova-Mutafchieva, L. et al. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J. Neurochem. 110, 966–975 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsutsumi, R. et al. Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures. Biochem. Biophys. Res. Commun. 511, 427–433 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • George, S. et al. Microglia affect alpha-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Mol. Neurodegener. 14, 34 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Allen Reish, H. E. & Standaert, D. G. Role of alpha-synuclein in inducing innate and adaptive immunity in Parkinson disease. J. Parkinsons Dis. 5, 1–19 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Grozdanov, V. & Danzer, K. M. Release and uptake of pathologic alpha-synuclein. Cell Tissue Res. 373, 175–182 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, I. et al. Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11, 1386 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14, 176 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ardah, M. T., Merghani, M. M. & Haque, M. E. Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates alpha-synuclein aggregation in vitro. Neurochem. Int. 128, 115–126 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar, S. et al. Molecular signatures of neuroinflammation induced by αSynuclein aggregates in microglial cells. Front. Immunol. 11, 33 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Han, J., Wang, M., Ren, M. & Lou, H. Contributions of triggering-receptor-expressed-on-myeloid-cells-2 to neurological diseases. Int. J. Neurosci. 127, 368–375 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venezia, S. et al. Toll-like receptor 4 stimulation with monophosphoryl lipid A ameliorates motor deficits and nigral neurodegeneration triggered by extraneuronal alpha-synucleinopathy. Mol. Neurodegener. 12, 52 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fellner, L. et al. Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia 61, 349–360 (2013).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kim, C. et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Su, X., Federoff, H. J. & Maguire-Zeiss, K. A. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox. Res. 16, 238–254 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Crabbe, M. et al. Increased P2X7 receptor binding is associated with neuroinflammation in acute but not chronic rodent models for Parkinson’s disease. Front. Neurosci. 13, 799 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bartels, T., De Schepper, S. & Hong, S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 370, 66–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pabon, M. M., Bachstetter, A. D., Hudson, C. E., Gemma, C. & Bickford, P. C. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J. Neuroinflammation 8, 9 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J. Neuroinflammation 8, 154 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Price, D. A. et al. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur. J. Neurosci. 29, 2177–2186 (2009).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chung, Y. C. et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease. Exp. Mol. Med. 48, e205 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. Q., Tan, L. & Yu, J. T. The role of the LRRK2 gene in Parkinsonism. Mol. Neurodegener. 9, 47 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Thevenet, J., Pescini Gobert, R., Hooft van Huijsduijnen, R., Wiessner, C. & Sagot, Y. J. Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS ONE 6, e21519 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Moehle, M. S. et al. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 32, 1602–1611 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schapansky, J., Nardozzi, J. D., Felizia, F. & LaVoie, M. J. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum. Mol. Genet. 23, 4201–4214 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Langston, R. G. et al. Association of a common genetic variant with Parkinson’s disease is mediated by microglia. Sci. Transl. Med. 14, eabp8869 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Russo, I. et al. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-kappaB p50 signaling in cultured microglia cells. J. Neuroinflammation 12, 230 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lin, Z. et al. DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis. 12, 715 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kim, J. H. et al. DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: a novel anti-inflammatory function of DJ-1. Neurobiol. Dis. 60, 1–10 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trudler, D., Weinreb, O., Mandel, S. A., Youdim, M. B. & Frenkel, D. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J. Neurochem. 129, 434–447 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fanciulli, A. & Wenning, G. K. Multiple-system atrophy. N. Engl. J. Med. 372, 249–263 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bower, J. H., Maraganore, D. M., McDonnell, S. K. & Rocca, W. A. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49, 1284–1288 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lyoo, C. H. et al. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain 131, 438–446 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinn, N. Multiple system atrophy–the nature of the beast. J. Neurol. Neurosurg. Psychiatry 52, 78–89 (1989).

    Article 
    PubMed Central 

    Google Scholar
     

  • Papp, M. I., Kahn, J. E. & Lantos, P. L. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J. Neurol. Sci. 94, 79–100 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu, P. H. et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann. Neurol. 44, 415–422 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cykowski, M. D. et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 138, 2293–2309 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nishie, M., Mori, F., Yoshimoto, M., Takahashi, H. & Wakabayashi, K. A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol. Appl. Neurobiol. 30, 546–554 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokoyama, T., Kusunoki, J. I., Hasegawa, K., Sakai, H. & Yagishita, S. Distribution and dynamic process of neuronal cytoplasmic inclusion (NCI) in MSA: correlation of the density of NCI and the degree of involvement of the pontine nuclei. Neuropathology 21, 145–154 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefanova, N. et al. Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov. Disord. 22, 2196–2203 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Monzio Compagnoni, G. et al. Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Rep. 11, 1185–1198 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schwarz, L., Goldbaum, O., Bergmann, M., Probst-Cousin, S. & Richter-Landsberg, C. Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J. Mol. Neurosci. 47, 256–266 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanji, K. et al. Alteration of autophagosomal proteins in the brain of multiple system atrophy. Neurobiol. Dis. 49, 190–198 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamoto, F. K. et al. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci. Rep. 8, 14215 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bukhatwa, S., Zeng, B. Y., Rose, S. & Jenner, P. A comparison of changes in proteasomal subunit expression in the substantia nigra in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Brain Res. 1326, 174–183 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefanova, N., Kaufmann, W. A., Humpel, C., Poewe, W. & Wenning, G. K. Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. Acta Neuropathol. 124, 51–65 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ishizawa, K. et al. Microglial activation parallels system degeneration in multiple system atrophy. J. Neuropathol. Exp. Neurol. 63, 43–52 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Salvesen, L. et al. Neocortical neuronal loss in patients with multiple system atrophy: a stereological study. Cereb. Cortex 27, 400–410 (2017).

    PubMed 

    Google Scholar
     

  • Nykjaer, C. H., Brudek, T., Salvesen, L. & Pakkenberg, B. Changes in the cell population in brain white matter in multiple system atrophy. Mov. Disord. 32, 1074–1082 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kubler, D. et al. Widespread microglial activation in multiple system atrophy. Mov. Disord. 34, 564–568 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jucaite, A. et al. Glia imaging differentiates multiple system atrophy from parkinson’s disease: a positron emission tomography study with [(11) C]PBR28 and Machine Learning Analysis. Mov. Disord. 37, 119–129 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Trojanowski, J. Q., Revesz, T. & Neuropathology Working Group on, M. S. A. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol. Appl. Neurobiol. 33, 615–620 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vieira, B. D., Radford, R. A., Chung, R. S., Guillemin, G. J. & Pountney, D. L. Neuroinflammation in multiple system atrophy: response to and cause of alpha-synuclein aggregation. Front. Cell. Neurosci. 9, 437 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hoffmann, A. et al. Oligodendroglial alpha-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol. 29, 380–396 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Refolo, V. et al. Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies. Acta Neuropathol. Commun. 6, 2 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Stefanova, N. et al. Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am. J. Pathol. 166, 869–876 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Daniele, S. G. et al. Activation of MyD88-dependent TLR1/2 signaling by misfolded alpha-synuclein, a protein linked to neurodegenerative disorders. Sci. Signal 8, ra45 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Stefanova, N. et al. Toll-like receptor 4 promotes alpha-synuclein clearance and survival of nigral dopaminergic neurons. Am. J. Pathol. 179, 954–963 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shao, Q. H. et al. Nurr1: A vital participant in the TLR4-NF-kappaB signal pathway stimulated by alpha-synuclein in BV-2cells. Neuropharmacology 144, 388–399 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brudek, T., Winge, K., Agander, T. K. & Pakkenberg, B. Screening of Toll-like receptors expression in multiple system atrophy brains. Neurochem. Res. 38, 1252–1259 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, L., Pei, L., Yao, S., Wu, Y. & Shang, Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front. Cell. Neurosci. 11, 63 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, F., Ayaki, T., Maki, T., Sawamoto, N. & Takahashi, R. NLRP3 inflammasome-related proteins are upregulated in the putamen of patients with multiple system atrophy. J. Neuropathol. Exp. Neurol. 77, 1055–1065 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valdinocci, D., Grant, G. D., Dickson, T. C. & Pountney, D. L. Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates. Mol. Cell Neurosci. 89, 80–94 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, G. P. et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 139, 855–874 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vahsen, B. F. et al. Non-neuronal cells in amyotrophic lateral sclerosis – from pathogenesis to biomarkers. Nat. Rev. Neurol. 17, 333–348 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364, 362 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Henkel, J. S. et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55, 221–235 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brettschneider, J. et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE 7, e39216 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nolan, M. et al. Quantitative patterns of motor cortex proteinopathy across ALS genotypes. Acta Neuropathol. Commun. 8, 98 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Turner, M. R. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601–609 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zurcher, N. R. et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 7, 409–414 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tondo, G. et al. (11) C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 7, 1513–1523 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Neumann, M. & Mackenzie, I. R. A. Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 45, 19–40 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spillantini, M. G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panza, F. et al. Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat. Rev. Neurol. 16, 213–228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pottier, C., Ravenscroft, T. A., Sanchez-Contreras, M. & Rademakers, R. Genetics of FTLD: overview and what else we can expect from genetic studies. J. Neurochem. 138, 32–53 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, W. H. et al. The rs75932628 and rs2234253 polymorphisms of the TREM2 gene were associated with susceptibility to frontotemporal lobar degeneration in Caucasian populations. Ann. Hum. Genet. 82, 177–185 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cagnin, A., Rossor, M., Sampson, E. L., Mackinnon, T. & Banati, R. B. In vivo detection of microglial activation in frontotemporal dementia. Ann. Neurol. 56, 894–897 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Malpetti, M. et al. In vivo PET imaging of neuroinflammation in familial frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 92, 319–322 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Taipa, R. et al. Patterns of microglial cell activation in Alzheimer disease and frontotemporal lobar degeneration. Neurodegener. Dis. 17, 145–154 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lant, S. B. et al. Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 40, 686–696 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, S. E., Han, L. Y., Clark, C. M., Grossman, M. & Trojanowski, J. Q. Quantitative neurohistological features of frontotemporal degeneration. Neurobiol. Aging 21, 913–919 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philips, T. & Rothstein, J. D. Rodent models of amyotrophic lateral sclerosis. Curr. Protoc. Pharmacol. 69, 5.67.1–5.67.21 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, B. J. & Talbot, K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog. Neurobiol. 85, 94–134 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. 21, 3369–3374 (2001).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lino, M. M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 22, 4825–4832 (2002).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Alexianu, M. E., Kozovska, M. & Appel, S. H. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57, 1282–1289 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, E. D., Oostveen, J. A. & Gurney, M. E. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 249–256 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irwin, D. J. et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol. 129, 469–491 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Benajiba, L. et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann. Neurol. 65, 470–473 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 106, 18809–18814 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lall, D. & Baloh, R. H. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J. Clin. Invest. 127, 3250–3258 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, K. R. et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90, 1102–1107 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207, 117–128 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yin, F. et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 24, 4639–4647 (2010).

    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Svahn, A. J. et al. Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol. 136, 445–459 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Spiller, K. J. et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci. 21, 329–340 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Le Ber, I. et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol. Aging 35, 2419 e2423–2419 e2425 (2014).


    Google Scholar
     

  • Guerreiro, R. J. et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 70, 78–84 (2013).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Giraldo, M. et al. Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer’s disease. Neurobiol. Aging 34, 2077 e2011–e2078 (2013).

    Article 

    Google Scholar
     

  • Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol. Neurodegener. 8, 19 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Xie, M. et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat. Neurosci. 25, 26–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Rep. 36, 109581 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Iguchi, Y. et al. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139, 3187–3201 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kasai, T. et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 117, 55–62 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinacker, P. et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch. Neurol. 65, 1481–1487 (2008).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Leal-Lasarte, M. M., Franco, J. M., Labrador-Garrido, A., Pozo, D. & Roodveldt, C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. FASEB J. 31, 2797–2816 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. TDP-43 activates microglia through NF-kappaB and NLRP3 inflammasome. Exp. Neurol. 273, 24–35 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gravel, M. et al. IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase 1. J. Neurosci. 36, 1031–1048 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liao, B., Zhao, W., Beers, D. R., Henkel, J. S. & Appel, S. H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 237, 147–152 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Krabbe, G. et al. Microglial NFkappaB-TNFalpha hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc. Natl Acad. Sci. USA 114, 5029–5034 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Eitan, C. et al. Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3’UTR protect against ALS. Nat. Neurosci. 25, 433–445 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Cox, L. M. et al. The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. Microbiome 10, 47 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature 588, 459–465 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324–1329 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lall, D. et al. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 109, 2275–2291.e2278 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Koppers, M. et al. C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann. Neurol. 78, 426–438 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chiot, A. et al. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat. Neurosci. 23, 1339–1351 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garofalo, S. et al. Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat. Commun. 11, 1773 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Williams, D. R. & Lees, A. J. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 8, 270–279 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Savica, R., Grossardt, B. R., Bower, J. H., Ahlskog, J. E. & Rocca, W. A. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol. 70, 859–866 (2013).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Coyle-Gilchrist, I. T. et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86, 1736–1743 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Boxer, A. L. et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 16, 552–563 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Imbimbo, B. P., Ippati, S., Watling, M. & Balducci, C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement. 18, 1008–1037 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Ruiz de Gordoa, J. et al. Microglia-related gene triggering receptor expressed in myeloid cells 2 (TREM2) is upregulated in the substantia nigra of progressive supranuclear palsy. Mov. Disord. 35, 885–890 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desai Bradaric, B., Patel, A., Schneider, J. A., Carvey, P. M. & Hendey, B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J. Neural Transm. (Vienna) 119, 59–71 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Fernandez-Botran, R. et al. Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat. Disord. 17, 683–688 (2011).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ishizawa, K. & Dickson, D. W. Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J. Neuropathol. Exp. Neurol. 60, 647–657 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov. Disord. 21, 89–93 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Passamonti, L. et al. [(11)C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology 90, e1989–e1996 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Palleis, C. et al. In vivo assessment of neuroinflammation in 4-repeat tauopathies. Mov. Disord. 36, 883–894 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malpetti, M. et al. Neuroinflammation and tau colocalize in vivo in progressive supranuclear palsy. Ann. Neurol. 88, 1194–1204 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Malpetti, M. et al. Neuroinflammation predicts disease progression in progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 92, 769–775 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sasaki, A. et al. Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res. 1214, 159–168 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Olst, L. et al. Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiol. Aging 89, 89–98 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS ONE 8, e76057 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Morales, I., Jimenez, J. M., Mancilla, M. & Maccioni, R. B. Tau oligomers and fibrils induce activation of microglial cells. J. Alzheimers Dis. 37, 849–856 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perea, J. R., Avila, J. & Bolos, M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp. Neurol. 310, 14–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovac, A. et al. Misfolded truncated protein tau induces innate immune response via MAPK pathway. J. Immunol. 187, 2732–2739 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majerova, P. et al. Microglia display modest phagocytic capacity for extracellular tau oligomers. J. Neuroinflammation 11, 161 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bolos, M. et al. Direct evidence of internalization of tau by microglia in vitro and in vivo. J. Alzheimers Dis. 50, 77–87 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolos, M. et al. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol. Neurodegener. 12, 59 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dejanovic, B. et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 100, 1322–1336.e1327 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brelstaff, J., Tolkovsky, A. M., Ghetti, B., Goedert, M. & Spillantini, M. G. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep. 24, 1939–1948.e1934 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Brown, G. C. & Neher, J. J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 15, 209–216 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, D. C. et al. LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J. Neuroinflammation 7, 56 (2010).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gorlovoy, P., Larionov, S., Pham, T. T. & Neumann, H. Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J. 23, 2502–2513 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bemiller, S. M. et al. Genetically enhancing the expression of chemokine domain of CX3CL1 fails to prevent tau pathology in mouse models of tauopathy. J. Neuroinflammation 15, 278 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J. Neurosci. 34, 12538–12546 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Maphis, N. et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138, 1738–1755 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Stancu, I. C. et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 137, 599–617 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, Y., Liu, L., Barger, S. W. & Griffin, W. S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611 (2003).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ojala, J. O., Sutinen, E. M., Salminen, A. & Pirttila, T. Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J. Neuroimmunol. 205, 86–93 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Baker, S., Polanco, J. C. & Gotz, J. Extracellular vesicles containing P301L mutant tau accelerate pathological tau phosphorylation and oligomer formation but do not seed mature neurofibrillary tangles in ALZ17 mice. J. Alzheimers Dis. 54, 1207–1217 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Si, Z., Sun, L. & Wang, X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed. Pharmacother. 137, 111327 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Laurent, C. et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140, 184–200 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov. Disord. 19, 1221–1226 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Henkel, K. et al. Imaging of activated microglia with PET and [11C]PK 11195 in corticobasal degeneration. Mov. Disord. 19, 817–821 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Hogan, D. B. et al. The prevalence and incidence of dementia with lewy bodies: a systematic review. Can. J. Neurol. Sci. 43, S83–S95 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89, 88–100 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dickson, D. W. Dementia with Lewy bodies: neuropathology. J. Geriatr. Psychiatry Neurol. 15, 210–216 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Outeiro, T. F. et al. Dementia with Lewy bodies: an update and outlook. Mol. Neurodegener. 14, 5 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Walker, L. et al. Quantitative neuropathology: an update on automated methodologies and implications for large scale cohorts. J. Neural Transm. (Vienna) 124, 671–683 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarro, L. et al. Amyloid-beta deposition and regional grey matter atrophy rates in dementia with Lewy bodies. Brain 139, 2740–2750 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nedelska, Z. et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol. Aging 36, 452–461 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Shepherd, C. E., Thiel, E., McCann, H., Harding, A. J. & Halliday, G. M. Cortical inflammation in Alzheimer disease but not dementia with Lewy bodies. Arch. Neurol. 57, 817–822 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Streit, W. J. & Xue, Q. S. Microglia in dementia with Lewy bodies. Brain Behav. Immun. 55, 191–201 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachstetter, A. D. et al. Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol. Commun. 3, 32 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Erskine, D. et al. Molecular changes in the absence of severe pathology in the pulvinar in dementia with Lewy bodies. Mov. Disord. 33, 982–991 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Amin, J. et al. Neuroinflammation in dementia with Lewy bodies: a human post-mortem study. Transl. Psychiatry 10, 267 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mackenzie, I. R. Activated microglia in dementia with Lewy bodies. Neurology 55, 132–134 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imamura, K. et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 109, 141–150 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajkumar, A. P. et al. Postmortem cortical transcriptomics of lewy body dementia reveal mitochondrial dysfunction and lack of neuroinflammation. Am. J. Geriatr. Psychiatry 28, 75–86 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Castellani, R. J. et al. CD3 in Lewy pathology: does the abnormal recall of neurodevelopmental processes underlie Parkinson’s disease. J. Neural Transm. (Vienna) 118, 23–26 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iannaccone, S. et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat. Disord. 19, 47–52 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surendranathan, A. et al. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain 141, 3415–3427 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Translocator protein in late stage Alzheimer’s disease and Dementia with Lewy bodies brains. Ann. Clin. Transl. Neurol. 6, 1423–1434 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nemoto, K. et al. Differentiating dementia with lewy bodies and Alzheimer’s disease by deep learning to structural MRI. J. Neuroimaging 31, 579–587 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Finkbeiner, S. Huntington’s Disease. Cold Spring Harb Perspect Biol 3, a007476 (2011).

  • Reiner, A., Dragatsis, I. & Dietrich, P. Genetics and neuropathology of Huntington’s disease. Int. Rev. Neurobiol. 98, 325–372 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Andrew, S. E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat. Genet. 4, 398–403 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, C. A. & Tabrizi, S. J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jansen, A. H. et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65, 50–61 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Graveland, G. A., Williams, R. S. & DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227, 770–773 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutekunst, C. A. et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534 (1999).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article 
    CAS 
    PubMed