Saturday, September 30, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Mild sleep restriction increases endothelial oxidative stress in female persons – Scientific Reports


  • St-Onge, M. P. et al. Sleep duration and quality: Impact on lifestyle behaviors and cardiometabolic health: A scientific statement from the American heart association. Circulation 134, e367–e386 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: A report from the American heart association. Circulation 145, e153–e639 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Makarem, N. et al. Redefining cardiovascular health to include sleep: Prospective associations with cardiovascular disease in the MESA sleep study. J. Am. Heart Assoc. 11, e025252 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrie, J. E. et al. A prospective study of change in sleep duration: Associations with mortality in the Whitehall II cohort. Sleep 30, 1659–1666 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayas, N. T. et al. A prospective study of sleep duration and coronary heart disease in women. Arch. Intern. Med. 163, 205–209 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Cappuccio, F. P. et al. Gender-specific associations of short sleep duration with prevalent and incident hypertension: The Whitehall II Study. Hypertension 50, 693–700 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, R. et al. Sleep deprivation impairs vascular function in healthy women: A clinical trial. Ann. Am. Thorac. Soc. 19, 2097–2100 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Covassin, N. et al. Effects of experimental sleep restriction on ambulatory and sleep blood pressure in healthy young adults: A randomized crossover study. Hypertension 78, 859–870 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gloire, G., Legrand-Poels, S. & Piette, J. NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 72, 1493–1505 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pennathur, S. & Heinecke, J. W. Oxidative stress and endothelial dysfunction in vascular disease. Curr. Diab. Rep. 7, 257–264 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaccaro, A. et al. Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell 181, 1307–1328 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, M. J. et al. Recurrent sleep fragmentation induces insulin and neuroprotective mechanisms in middle-aged flies. Front. Aging Neurosci. 8, 180 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikonova, E. V. et al. Changes in components of energy regulation in mouse cortex with increases in wakefulness. Sleep 33, 889–900 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva-Islas, C. A. & Maldonado, P. D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 134, 92–99 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. L. et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol. 290, H1862-1870 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. D. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769–789 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill, V. M. et al. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 16, e2005206 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skinner, N. & Dorrian, J. A work-life perspective on sleep and fatigue–looking beyond shift workers. Ind. Health 53, 417–426 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emin, M. et al. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci. Transl. Med. 8, 320–321 (2016).

    Article 

    Google Scholar
     

  • Onat, D. et al. Vascular endothelial sampling and analysis of gene transcripts: A new quantitative approach to monitor vascular inflammation. J. Appl. Physiol. 1985(103), 1873–1878 (2007).

    Article 

    Google Scholar
     

  • Aggarwal, B. et al. Effects of inadequate sleep on blood pressure and endothelial inflammation in women: Findings from the American heart association go red for women strategically focused research network. J. Am. Heart Assoc. 7, e008590 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. C. et al. MDG-1 inhibits H2O2-induced apoptosis and inflammation in human umbilical vein endothelial cells. Mo. l Med. Rep. 16, 3673–3679 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Silver, A. E. et al. Overweight and obese humans demonstrate increased vascular endothelial NAD(P)H oxidase-p47(phox) expression and evidence of endothelial oxidative stress. Circulation 115, 627–637 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antoniades, C. et al. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: Effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114, 1193–1201 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, K. et al. Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress. Redox. Biol. 20, 146–156 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lungato, L. et al. Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes. Scand. J. Immunol. 77, 195–199 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramanathan, L., Hu, S., Frautschy, S. A. & Siegel, J. M. Short-term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior. Behav. Brain Res. 207, 305–309 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iso, T., Suzuki, T., Baird, L. & Yamamoto, M. Absolute amounts and status of the Nrf2-Keap1-Cul3 complex within cells. Mol. Cell. Biol. 36, 3100–3112 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell Biol. 25, 162–171 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stark, C. et al. BioGRID: A general repository for interaction datasets. Nucl. Acids Res. 34, D535-539 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer-Schaller, N. et al. The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc. Natl. Acad. Sci. USA 106, 12365–12370 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, T. et al. DCUN1D3, a novel UVC-responsive gene that is involved in cell cycle progression and cell growth. Cancer Sci. 99, 2128–2135 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucl. Acids Res. 48, D87–D92 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Vickers, E. R. et al. Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol. Cell Biol. 24, 10340–10351 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramanan, N. et al. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8, 759–767 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hor, C. N. et al. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc. Natl. Acad. Sci. USA 116, 25773–25783 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donlea, J. M., Ramanan, N. & Shaw, P. J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324, 105–108 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donlea, J. M., Ramanan, N., Silverman, N. & Shaw, P. J. Genetic rescue of functional senescence in synaptic and behavioral plasticity. Sleep 37, 1427–1437 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotwein, P. Regulation of gene expression by growth hormone. Mol. Cell. Endocrinol. 507, 110788 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaffe, C. A. et al. Regulatory mechanisms of growth hormone secretion are sexually dimorphic. J. Clin. Invest. 102, 153–164 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues, N. R. et al. Short-term sleep deprivation with exposure to nocturnal light alters mitochondrial bioenergetics in Drosophila. Free Radic. Biol. Med. 120, 395–406 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreazza, A. C. et al. Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice. J. Psychiatr. Res. 44, 775–780 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Canty, T. G. Jr. et al. Oxidative stress induces NF-kappaB nuclear translocation without degradation of IkappaBalpha. Circulation 100, 361–364 (1999).

    CAS 

    Google Scholar
     

  • Irwin, M. R., Carrillo, C. & Olmstead, R. Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav. Immun. 24, 54–57. https://doi.org/10.1016/j.bbi.2009.06.001 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stavropoulos, N. & Young, M. W. insomniac and Cullin-3 regulate sleep and wakefulness in drosophila. Neuron 72, 964–976 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, G. et al. SCCRO3 (DCUN1D3) antagonizes the neddylation and oncogenic activity of SCCRO (DCUN1D1). J. Biol. Chem. 289, 34728–34742 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keuss, M. J. et al. Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J. Cell Sci. 129, 1441–1454 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monda, J. K. et al. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21, 42–53 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. DCUN1D3 activates SCFSKP2 ubiquitin E3 ligase activity and cell cycle progression under UV damage. Oncotarget 7, 58483–58491 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, S. M. et al. Derivative of bardoxolone methyl, dh404, in an inverse dose-dependent manner lessens diabetes-associated atherosclerosis and improves diabetic kidney disease. Diabetes 63, 3091–3103 (2014).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: