Wednesday, September 27, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Minnelide combined with anti-ANGPTL3-FLD monoclonal antibody completely protects mice with adriamycin nephropathy by promoting autophagy and inhibiting apoptosis – Cell Death & Disease


  • Vivarelli M, Massella L, Ruggiero B, Emma F. Minimal change disease. Clin J Am Soc Nephrol. 2017;12:332–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003;362:629–39.

    Article 
    PubMed 

    Google Scholar
     

  • Hogg RJ, Portman RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J. Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics. 2000;105:1242–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elie V, Fakhoury M, Deschênes G, Jacqz-Aigrain E. Physiopathology of idiopathic nephrotic syndrome: lessons from glucocorticoids and epigenetic perspectives. Pediatr Nephrol. 2012;27:1249–56.

    Article 
    PubMed 

    Google Scholar
     

  • Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasà M, et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol. 2014;25:850–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koskimies O, Vilska J, Rapola J, Hallman N. Long-term outcome of primary nephrotic syndrome. Arch Dis Child. 1982;57:544–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pravitsitthikul N, Willis NS, Hodson EM, Craig JC. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children. Cochrane Database Syst Rev. 2013;10:Cd002290.


    Google Scholar
     

  • Rüth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ. Children with steroid-sensitive nephrotic syndrome come of age: long-term outcome. J Pediatr. 2005;147:202–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hyams JS, Carey DE. Corticosteroids and growth. J Pediatr. 1988;113:249–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng JS, Wong W, Law RW, Hui J, Wong EN, Lam DS. Ocular complications of paediatric patients with nephrotic syndrome. Clin Exp Ophthalmol. 2001;29:239–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neuhaus TJ, Langlois V, Licht C. Behavioural abnormalities in children with nephrotic syndrome–an underappreciated complication of a standard treatment? Nephrol Dial Transplant. 2010;25:2397–9.

    Article 
    PubMed 

    Google Scholar
     

  • Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet (Lond, Engl). 2017;389:1238–52.

    Article 

    Google Scholar
     

  • Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol. 2012;23:1917–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato K, Seol HS, Sato K, Kamada T, Akiba Y. Molecular characterization and expression of angiopoietin-like protein 3 in the chicken, Gallus gallus. Gen Comp Endocrinol. 2008;158:102–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kersten S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13:731–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang S, Qiu GH, Zhu N, Hu ZY, Liao DF, Qin L. ANGPTL3: a novel biomarker and promising therapeutic target. J Drug Target. 2019;27:876–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad Z, Banerjee P, Hamon S, Chan KC, Bouzelmat A, Sasiela WJ, et al. Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation 2019;140:470–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet. 2002;30:151–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao J, Xu H, Sun L, Zhao Z, Zhang X. Expression of ANGPTL3 in children with primary nephrotic syndrome. Chin J Nephrol. 2006;22:286–90.

    CAS 

    Google Scholar
     

  • Dai R, Lin Y, Liu H, Rao J, Zhai Y, Zha X, et al. A vital role for Angptl3 in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro. BMC Nephrol. 2015;16:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia R, Hong X, Li S, Haichun Y, Chuanming H. Expression of angiopoietin-like 3 associated with puromycin-induced podocyte damage. Nephron Exp Nephrol. 2010;115:e38–45.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Gao X, Zhai Y, Shen Q, Sun L, Feng C, et al. A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatr Res. 2015;77:732–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Rao J, Zha XL, Xu H. Angiopoietin-like 3 induces podocyte F-actin rearrangement through integrin α(V)β3/FAK/PI3K pathway-mediated Rac1 activation. BioMed Res Int. 2013;2013:135608.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv Q, Han X, Ni J, Ma Q, Dai R, Liu J, et al. Anti-ANGPTL3-FLD monoclonal antibody treatment ameliorates podocyte lesions through attenuating mitochondrial damage. Cell Death Dis. 2022;13:867.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kupchan SM, Court WA, Dailey RG Jr., Gilmore CJ, Bryan RF. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J Am Chem Soc. 1972;94:7194–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019;40:327–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Zhang Y, Liu X, Wu X, Huang L, Gao W. Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics 2021;11:7199–221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Y, Zhao Y, Zheng Y. Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity. Chin Med. 2021;16:114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chugh R, Sangwan V, Patil SP, Dudeja V, Dawra RK, Banerjee S, et al. A preclinical evaluation of Minnelide as a therapeutic agent against pancreatic cancer. Sci Transl Med. 2012;4:156ra39.

    Article 

    Google Scholar
     

  • Zhao Q, Huang JF, Cheng Y, Dai MY, Zhu WF, Yang XW, et al. Polyamine metabolism links gut microbiota and testicular dysfunction. Microbiome 2021;9:224.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83:253–307.

    Article 
    PubMed 

    Google Scholar
     

  • Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 2017;8:413.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou L, Liu Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol. 2015;11:535–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Q, Banu K, Ni Z, Leventhal JS, Menon MC. Podocyte autophagy in homeostasis and disease. J Clin Med. 2021;10:1184.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi YY, Zhou XJ, Cheng FJ, Hou P, Ren YL, Wang SX, et al. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis. Ann Rheum Dis. 2018;77:1799–809.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi M, Zhang L, Liu Y, Livingston MJ, Chen JK, Nahman NS Jr., et al. Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Ren Physiol. 2017;313:F74–f84.

    Article 
    CAS 

    Google Scholar
     

  • Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther. 2019;10:95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Investig. 2011;121:2197–209.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Feng Z, Cui S, Hou K, Tang L, Zhou J, et al. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One. 2013;8:e63799.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mundel P, Reiser J, Zúñiga Mejía Borja A, Pavenstädt H, Davidson GR, Kriz W, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res. 1997;236:248–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Downie ML, Gallibois C, Parekh RS, Noone DG. Nephrotic syndrome in infants and children: pathophysiology and management. Paediatr Int Child Health. 2017;37:248–58.

    Article 
    PubMed 

    Google Scholar
     

  • D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N. Engl J Med. 2011;365:2398–411.

    Article 
    PubMed 

    Google Scholar
     

  • Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Investig. 2014;124:2333–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagata M. Podocyte injury and its consequences. Kidney Int. 2016;89:1221–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeansson M, Björck K, Tenstad O, Haraldsson B. Adriamycin alters glomerular endothelium to induce proteinuria. J Am Soc Nephrol. 2009;20:114–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology. 2011;16:30–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ni Y, Wang X, Yin X, Li Y, Liu X, Wang H, et al. Plectin protects podocytes from adriamycin-induced apoptosis and F-actin cytoskeletal disruption through the integrin α6β4/FAK/p38 MAPK pathway. J Cell Mol Med. 2018;22:5450–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaudet D, Gipe DA, Pordy R, Ahmad Z, Cuchel M, Shah PK, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377:296–7.

    Article 
    PubMed 

    Google Scholar
     

  • Dewey FE, Gusarova V, Dunbar RL, O’Dushlaine C, Schurmann C, Gottesman O, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl J Med. 2017;377:211–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Xu H, Liu H, Rao J, Li Y, Zha X. Angiopoietin-like protein 3 regulates the motility and permeability of podocytes by altering nephrin expression in vitro. Biochem Biophys Res Commun. 2010;399:31–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han X, Dai R, Zhai Y, Shen Q, Sun L, Liu H, et al. Anti-proteinuria effect of antibody against ANGPTL3 coil-coiled domain on adriamycin-induced nephropathy in mice. Biochem Biophys Res Commun. 2019;516:812–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng CX, Chen ZH, Zeng CH, Qin WS, Li LS, Liu ZH. Triptolide protects podocytes from puromycin aminonucleoside induced injury in vivo and in vitro. Kidney Int. 2008;74:596–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem. 2019;176:378–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skorupan N, Ahmad MI, Steinberg SM, Trepel JB, Cridebring D, Han H, et al. A phase II trial of the super-enhancer inhibitor Minnelide™ in advanced refractory adenosquamous carcinoma of the pancreas. Future Oncol. 2022;18:2475–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol. 2014;25:1387–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurts C, Meyer-Schwesinger C. Protecting the kidney against autoimmunity and inflammation. Nat Rev Nephrol. 2019;15:66–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: mechanism and therapeutic potential. Pharmacol Ther. 2022;237:108240.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Investig. 1997;99:342–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steffes MW, Schmidt D, McCrery R, Basgen JM. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 2001;59:2104–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tharaux PL, Huber TB. How many ways can a podocyte die? Semin Nephrol. 2012;32:394–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maremonti F, Meyer C, Linkermann A. Mechanisms and models of kidney tubular necrosis and nephron loss. J Am Soc Nephrol. 2022;33:472–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases. Cells 2019;8:61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147:728–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Deng Y, Wang Y, Sun X, Chen S, Fu G. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif. 2020;53:e12738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Zhang WJ, Wang XM. Triptolide with potential medicinal value for diseases of the central nervous system. CNS Neurosci Ther. 2013;19:76–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014;155:67–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: