Friday, February 23, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury – Cell Death Discovery


  • Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrology: Cjasn 2013;8:1482–93.

    Article 

    Google Scholar
     

  • Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 2018;14:607–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 2016;12:267–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 2021;11:1845–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graier WF, Frieden M, Malli R. Mitochondria and Ca(2+) signaling: old guests, new functions. Pflug Arch: Eur J Physiol 2007;455:375–96.

    Article 
    CAS 

    Google Scholar
     

  • Tao M, You CP, Zhao RR, Liu SJ, Zhang ZH, Zhang C, et al. Animal mitochondria: evolution, function, and disease. Curr Mol Med 2014;14:115–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochimica et Biophys Acta Bioenerg 2017;1858:602–14.

    Article 
    CAS 

    Google Scholar
     

  • Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, et al. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022;27:434–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duann P, Lin PH. Mitochondria damage and kidney disease. Adv Exp Med Biol 2017;982:529–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid redox Signal 2016;25:119–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafelski SM. Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 2013;11:71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012;148:1145–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrology: Jasn 2016;27:3356–67.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chiba T, Peasley KD, Cargill KR, Maringer KV, Bharathi SS, Mukherjee E, et al. Sirtuin 5 regulates proximal tubule fatty acid oxidation to protect against AKI. J Am Soc Nephrology: Jasn 2019;30:2384–98.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 2018;14:880–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis 2019;10:677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parekh DJ, Weinberg JM, Ercole B, Torkko KC, Hilton W, Bennett M, et al. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrology: Jasn 2013;24:506–17.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Szeto HH, Liu S, Soong Y, Seshan SV, Cohen-Gould L, Manichev V, et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD. J Am Soc Nephrology: Jasn 2017;28:1437–49.

    Article 
    CAS 

    Google Scholar
     

  • Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol 2021;17:299–318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu Rev Physiol 2016;78:23–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, et al. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Ren Physiol 2012;302:F1210–23.

    Article 
    CAS 

    Google Scholar
     

  • Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 2004;3:164–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Jiang L, Chew SH, Hirayama T, Sekido Y, Toyokuni S. Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia. Redox Biol 2019;26:101297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pabla N, Bajwa A. Role of mitochondrial therapy for ischemic-reperfusion injury and acute kidney injury. Nephron 2022;146:253–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akie TE, Liu L, Nam M, Lei S, Cooper MP. OXPHOS-mediated induction of NAD+ promotes complete oxidation of fatty acids and interdicts non-alcoholic fatty liver disease. PloS one 2015;10:e0125617.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ralto KM, Rhee EP, Parikh SM. NAD(+) homeostasis in renal health and disease. Nat Rev Nephrol 2020;16:99–111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández ML, Marson ME, Ramirez JC, Mastrantonio G, Schijman AG, Altcheh J, et al. Pharmacokinetic and pharmacodynamic responses in adult patients with Chagas disease treated with a new formulation of benznidazole. Mem do Inst Oswaldo Cruz 2016;111:218–21.

    Article 

    Google Scholar
     

  • Mou L, Yang L, Hou S, Wang B, Wang X, Hu L, et al. Structure-activity relationship studies of 2,4,5-Trisubstituted Pyrimidine derivatives leading to the identification of a novel and potent sirtuin 5 inhibitor against sepsis-associated acute kidney injury. J Med Chem 2023;66:11517–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parikh SM, Yang Y, He L, Tang C, Zhan M, Dong Z. Mitochondrial function and disturbances in the septic kidney. Semin Nephrol 2015;35:108–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C, He L, Liu J, Dong Z. Mitophagy: basic mechanism and potential role in kidney diseases. Kidney Dis 2015;1:71–9.

    Article 

    Google Scholar
     

  • Lin C, Chen W, Han Y, Sun Y, Zhao X, Yue Y, et al. PTEN-induced kinase 1 enhances the reparative effects of bone marrow mesenchymal stromal cells on mice with renal ischaemia/reperfusion-induced acute kidney injury. Hum cell 2022;35:1650–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023;19:401–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol 2020;36:101671.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Wang H, Jiang C, Zhang M. Renal ischemia/reperfusion-induced mitophagy protects against renal dysfunction via Drp1-dependent-pathway. Exp Cell Res 2018;369:27–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015;6:524–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double-edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014;2:702–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 2013;49:121–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol 2019;26:101254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivankovic D, Chau KY, Schapira AH, Gegg ME. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem 2016;136:388–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al Ojaimi M, Salah A, El-Hattab AW. Mitochondrial fission and fusion: molecular mechanisms, biological functions, and related disorders. Membranes 2022;12:893.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Investig 2015;125:715–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long RT, Peng JB, Huang LL, Jiang GP, Liao YJ, Sun H, et al. Augmenter of liver regeneration alleviates renal hypoxia-reoxygenation injury by regulating mitochondrial dynamics in renal tubular epithelial cells. Mol Cells 2019;42:893–905.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Li H, Su J, Xu S, Zhu F, Ai J, et al. Numb depletion promotes Drp1-mediated mitochondrial fission and exacerbates mitochondrial fragmentation and dysfunction in acute kidney injury. Antioxid Redox Signal 2019;30:1797–816.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall AR, Burke N, Dongworth RK, Kalkhoran SB, Dyson A, Vicencio JM, et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis 2016;7:e2238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan L, Che Z, Meng X, Yu Y, Li M, Yu Z, et al. MCU Up-regulation contributes to myocardial ischemia-reperfusion Injury through calpain/OPA-1-mediated mitochondrial fusion/mitophagy Inhibition. J Cell Mol Med 2019;23:7830–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Li Q, Liu S, An X, Huang Z, Zhang B, et al. Protective effect of hyperoside against renal ischemia-reperfusion injury via modulating mitochondrial fission, oxidative stress, and apoptosis. Free Radic Res 2019;53:727–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao X, Hu Y, Quirós PM, Wei Q, López-Otín C, Dong Z. OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. Am J Physiol Ren Physiol 2014;306:F1318–26.

    Article 
    CAS 

    Google Scholar
     

  • Neres-Santos RS, Junho CVC, Panico K, Caio-Silva W, Pieretti JC, Tamashiro JA, et al. Mitochondrial dysfunction in Cardiorenal Syndrome 3: Renocardiac effect of vitamin C. Cells 2021;10:3029.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Ren Physiol 2012;302:F853–64.

    Article 

    Google Scholar
     

  • Vidali S, Aminzadeh S, Lambert B, Rutherford T, Sperl W, Kofler B, et al. Mitochondria: The ketogenic diet–A metabolism-based therapy. Int J Biochem Cell Biol 2015;63:55–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portilla D, Dai G, Peters JM, Gonzalez FJ, Crew MD, Proia AD. Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. Am J Physiol Ren Physiol 2000;278:F667–75.

    Article 
    CAS 

    Google Scholar
     

  • Gao Z, Zhang C, Peng F, Chen Q, Zhao Y, Chen L, et al. Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia-reperfusion injure by restoring CPT1A mediated fatty acid oxidation. Stem cell Res Ther 2022;13:191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020;11:102.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klopstock T, Priglinger C, Yilmaz A, Kornblum C, Distelmaier F, Prokisch H. Mitochondrial disorders. Dtsch Arzteblatt Int 2021;118:741–8.


    Google Scholar
     

  • Liao X, Lv X, Zhang Y, Han Y, Li J, Zeng J, et al. Fluorofenidone inhibits UUO/IRI-induced renal fibrosis by reducing mitochondrial damage. Oxid Med Cell Longev 2022;2022:2453617.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matés JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, et al. Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 2009;41:2051–61.

    Article 
    PubMed 

    Google Scholar
     

  • Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J, et al. De novo NAD(+) biosynthetic impairment in acute kidney injury in humans. Nat Med 2018;24:1351–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amores-Sánchez MI, Medina MA. Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab 1999;67:100–5.

    Article 
    PubMed 

    Google Scholar
     

  • Matés JM, Pérez-Gómez C, Núñez de Castro I, Asenjo M, Márquez J. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem cell Biol 2002;34:439–58.

    Article 
    PubMed 

    Google Scholar
     

  • Cruzat VF, Bittencourt A, Scomazzon SP, Leite JS, de Bittencourt PI Jr., Tirapegui J. Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia. Nutrition 2014;30:602–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massudi H, Grant R, Guillemin GJ, Braidy NNAD. metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep: Commun Free Radic Res 2012;17:28–46.

    Article 
    CAS 

    Google Scholar
     

  • Fantus D, Rogers NM, Grahammer F, Huber TB, Thomson AW. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 2016;12:587–609.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim Y, Park CW. Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Res Clin Pract 2016;35:69–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lempiäinen J, Finckenberg P, Levijoki J, Mervaala E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br J Pharmacol 2012;166:1905–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 2014;24:787–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhanabalan K, Mzezewa S, Huisamen B, Lochner A. Mitochondrial oxidative phosphorylation function and mitophagy in ischaemic/reperfused hearts from control and high-fat diet rats: effects of long-term melatonin treatment. Cardiovasc Drugs Ther 2020;34:799–811.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: links to Parkinsonism. Cold Spring Harb Perspect Biol 2012;4:a011338.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Zhu P, Li R, Ren J, Zhou H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol 2020;30:101415.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin L, Yu B, Liu G, Nie W, Wang J, Chen J, et al. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. FASEB J: Off Publ Fed Am Soc Exp Biol 2022;36:e22342.

    Article 
    CAS 

    Google Scholar
     

  • Han SJ, Jang HS, Noh MR, Kim J, Kong MJ, Kim JI, et al. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase deficiency exacerbates mitochondrial and cell damage after kidney ischemia-reperfusion injury. J Am Soc Nephrol: Jasn 2017;28:1200–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Zhu P, Li R, Ren J, Zhang Y, Zhou H. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics 2020;10:384–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 2015;5:163–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry HM, Huang L, Wilson RJ, Bajwa A, Sesaki H, Yan Z, et al. Dynamin-related protein 1 deficiency promotes recovery from AKI. J Am Soc Nephrology: Jasn 2018;29:194–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Lu M, Xiong L, Fan J, Zhou Y, Li H, et al. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis 2020;11:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haileselassie B, Mukherjee R, Joshi AU, Napier BA, Massis LM, Ostberg NP, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J Mol Cell Cardiol 2019;130:160–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi X, Qvit N, Su YC, Mochly-Rosen DA. novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J cell Sci 2013;126:789–802.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Y, Ma Z, Zhu J, Zeng M, Liu H, Dong Z. miR-214 represses mitofusin-2 to promote renal tubular apoptosis in ischemic acute kidney injury. Am J Physiol Ren Physiol 2020;318:F878–f87.

    Article 
    CAS 

    Google Scholar
     

  • Awad AS, Kamel R, Sherief MA. Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N-1-acetyl-transferase gene expression induced by renal ischaemia-reperfusion in rats. J Pharm Pharmacol 2011;63:1037–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashem KS, Abdelazem AZ, Mohammed MA, Nagi AM, Aboulhoda BE, Mohammed ET, et al. Thymoquinone alleviates mitochondrial viability and apoptosis in diclofenac-induced acute kidney injury (AKI) via regulating Mfn2 and miR-34a mRNA expressions. Environ Sci Pollut Res Int 2021;28:10100–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Luo M, Bai X, Li J, Nie P, Li B, et al. SS-31, a mitochondria-targeting peptide, ameliorates kidney disease. Oxid Med Cell Longev 2022;2022:1295509.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrology: Jasn 2011;22:1041–52.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tan XH, Zheng XM, Yu LX, He J, Zhu HM, Ge XP, et al. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J Cell Mol Med 2017;21:2909–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Z, Zhang X, Ito K, Li Y, Montgomery RA, Tachibana S, et al. Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide. Am J Physiol Ren Physiol 2008;294:F491–8.

    Article 
    CAS 

    Google Scholar
     

  • Jabbari H, Roushandeh AM, Rostami MK, Razavi-Toosi MT, Shokrgozar MA, Jahanian-Najafabadi A, et al. Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat. Biochim et Biophys acta Mol Basis Dis 2020;1866:165809.

    Article 
    CAS 

    Google Scholar
     

  • Jesinkey SR, Funk JA, Stallons LJ, Wills LP, Megyesi JK, Beeson CC, et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J Am Soc Nephrol 2014;25:1157–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stallons LJ, Funk JA, Schnellmann RG Mitochondrial Homeostasis in Acute Organ Failure. Current pathobiology reports. 2013;1.

  • Whitaker RM, Korrapati MC, Stallons LJ, Jesinkey SR, Arthur JM, Beeson CC, et al. Urinary ATP Synthase Subunit β is a novel biomarker of renal mitochondrial dysfunction in acute kidney injury. Toxicolog Sci 2015;145:108–17.

    Article 
    CAS 

    Google Scholar
     

  • Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of mitochondrial DNA damage in kidney diseases: a new biomarker. Int J Mol Sci 2022;23:15166.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Zhang Y, Wu M, Li Z, Li X, Liu Z, et al. Importance of urinary mitochondrial DNA in diagnosis and prognosis of kidney diseases. Mitochondrion 2021;61:174–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response. Annu Rev Immunol 2019;37:325–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun M, Hao T, Li X, Qu A, Xu L, Hao C, et al. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat Commun 2018;9:4494.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poudel N, Okusa MD. Pannexins in acute kidney injury. Nephron 2019;143:158–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, et al. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol 2015;210:1153–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su L, Zhang J, Wang J, Wang X, Cao E, Yang C, et al. Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 2023;6:889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 2014;141:150–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maestro C, Leache L, Gutiérrez-Valencia M, Saiz LC, Gómez H, Bacaicoa MC, et al. Efficacy and safety of N-acetylcysteine for preventing post-intravenous contrast acute kidney injury in patients with kidney impairment: a systematic review and meta-analysis. Eur Radiol 2023;33:6569–81.

    Article 
    PubMed 

    Google Scholar
     

  • Azarkish F, Nematbakhsh M, Fazilati M, Talebi A, Pilehvarian AA, Pezeshki Z, et al. N-acetylcysteine prevents kidney and lung disturbances in renal ischemia/reperfusion injury in rat. Int J Prev Med 2013;4:1139–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aki T, Tanaka H, Funakoshi T, Unuma K, Uemura K. Excessive N-acetylcysteine exaggerates glutathione redox homeostasis and apoptosis during acetaminophen exposure in Huh-7 human hepatoma cells. Biochem Biophys Res Commun 2023;676:66–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Li M, Tan C. Efficacy of N-acetylcysteine in preventing acute kidney injury and major adverse cardiac events after cardiac surgery: a meta-analysis and trial sequential analysis. Front Med 2022;9:795839.

    Article 

    Google Scholar
     

  • Baker WL, Anglade MW, Baker EL, White CM, Kluger J, Coleman CI. Use of N-acetylcysteine to reduce post-cardiothoracic surgery complications: a meta-analysis. Eur J Cardio-Thorac Surg 2009;35:521–7.

    Article 

    Google Scholar
     

  • Radajewska A, Szyller J, Krzywonos-Zawadzka A, Olejnik A, Sawicki G, Bil-Lula I. Mitoquinone alleviates donation after cardiac death kidney injury during hypothermic machine perfusion in rat model. Int J Mol Sci 2023;24:14772.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wang M, Wang S. Effect of inhibiting mitochondrial fission on energy metabolism in rat hippocampal neurons during ischemia/reperfusion injury. Neurol Res 2016;38:1027–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Ma J, Lin D. [Effect of dynamin-related protein 1 in rats with myocardial ischemia/reperfusion injury]. Zhonghua wei Zhong Bing Ji Jiu Yi Xue 2017;29:902–6.

    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles