Sunday, February 25, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Molecular profile of bladder cancer progression to clinically aggressive subtypes – Nature Reviews Urology


  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Board, W. C. O. T. E. Urinary and Male Genital Tumours. 5th edn, (International Agency for Research on Cancer, 2022).

  • Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sjodahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sjodahl, G. et al. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol. 183, 681–691 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Compérat, E. et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet 400, 1712–1721 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C. C. et al. Assessment of luminal and basal phenotypes in bladder cancer. Sci. Rep. 10, 9743 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556 e525 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article 

    Google Scholar
     

  • Guo, C. C. & Czerniak, B. Bladder cancer in the genomic era. Arch. Pathol. Lab. Med. 143, 695–704 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Czerniak, B., Dinney, C. & McConkey, D. Origins of bladder cancer. Annu. Rev. Pathol. 11, 149–174 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiess, P. E. & Czerniak, B. Dual-track pathway of bladder carcinogenesis: practical implications. Arch. Pathol. Lab. Med. 130, 844–852 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amin, M. B. Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications. Mod. Pathol. 22, S96–S118 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Al-Ahmadie, H. A. et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat. Genet. 48, 356–358 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman-Censits, J. et al. Urothelial cancers with small cell variant histology have confirmed high tumor mutational burden, frequent TP53 and RB mutations, and a unique gene expression profile. Eur. Urol. Oncol. 4, 297–300 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Matulay, J. T., Narayan, V. M. & Kamat, A. M. Clinical and genomic considerations for variant histology in bladder cancer. Curr. Oncol. Rep. 21, 23 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Monn, M. F. et al. Contemporary bladder cancer: variant histology may be a significant driver of disease. Urol. Oncol. 33, 18.e15–18.e20 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Takahara, T., Murase, Y. & Tsuzuki, T. Urothelial carcinoma: variant histology, molecular subtyping, and immunophenotyping significant for treatment outcomes. Pathology 53, 56–66 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis, D. L., Porten, S. P. & Kamat, A. M. Should histologic variants alter definitive treatment of bladder cancer? Curr. Opin. Urol. 23, 435–443 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Grignon DJ, A.-A. H. et al. Tumors of the Urinary Tract. 4th edn, 77–133 (IARC Press, 2016).

  • Guo, C. C. & Czerniak, B. Molecular taxonomy and immune checkpoint therapy in bladder cancer. Surg. Pathol. Clin. 15, 681–694 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, C. C. et al. Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer. Cell Rep. 27, 1781–1793.e1784 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. Small cell carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical analysis of 81 cases. Hum. Pathol. 79, 57–65 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss, T. J. et al. Comprehensive genomic characterization of upper tract urothelial carcinoma. Eur. Urol. 72, 641–649 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, C. C. et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur. Urol. 70, 611–620 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McConkey, D. J. et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naive urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur. Urol. 69, 855–862 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dadhania, V. et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 12, 105–117 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinstein, J. N. et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cianfrocca, M. & Gradishar, W. New molecular classifications of breast cancer. CA Cancer J. Clin. 59, 303–313 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Dyrskjøt, L. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat. Genet. 33, 90–96 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Blaveri, E. et al. Bladder cancer outcome and subtype classification by gene expression. Clin. Cancer Res. 11, 4044–4055 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majewski, T. et al. Whole-organ genomic characterization of mucosal field effects initiating bladder carcinogenesis. Cell Rep. 26, 2241–2256.e2244 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, G. et al. Urothelial-to-neural plasticity drives progression to small cell bladder cancer. iScience 23, 101201 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanfrancesco, J. et al. Sarcomatoid urothelial carcinoma of the bladder: analysis of 28 cases with emphasis on clinicopathologic features and markers of epithelial-to-mesenchymal transition. Arch. Pathol. Lab. Med. 140, 543–551 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wright, J. L. et al. Differences in survival among patients with sarcomatoid carcinoma, carcinosarcoma and urothelial carcinoma of the bladder. J. Urol. 178, 2302–2306 (2007). discussion 2307.

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J., Wang, F. W., Lagrange, C. A., Hemstreet Iii, G. P. & Kessinger, A. Clinical features of sarcomatoid carcinoma (carcinosarcoma) of the urinary bladder: analysis of 221 cases. Sarcoma 2010, 454792 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontugne, J. et al. Progression-associated molecular changes in basal/squamous and sarcomatoid bladder carcinogenesis. J. Pathol. 259, 455–467 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

  • Ochoa, A. E. et al. Specific micro-RNA expression patterns distinguish the basal and luminal subtypes of muscle-invasive bladder cancer. Oncotarget 7, 80164–80174 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, M. N. et al. The p63 protein isoform ΔNp63α inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of MIR-205. J. Biol. Chem. 288, 3275–3288 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e296 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, M. et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc. Natl Acad. Sci. USA 113, 2170–2175 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, S. et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat. Commun. 5, 5006 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin. Cancer Res. 22, 609–620 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genitsch, V. et al. Morphologic and genomic characterization of urothelial to sarcomatoid transition in muscle-invasive bladder cancer. Urol. Oncol. 37, 826–836 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Small cell carcinoma of the urinary bladder: a clinicopathological and immunohistochemical analysis of 81 cases. Hum. Pathol. 79, 57–65 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjodahl, G., Eriksson, P., Liedberg, F. & Hoglund, M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J. Pathol. 242, 113–125 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batista da Costa, J. et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 25, 3908–3920 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, M. T. et al. Small-cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis. Clin. Cancer Res. 24, 1965–1973 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddall, N. A., McLaughlin, E. A., Marriner, N. L. & Hime, G. R. The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc. Natl Acad. Sci. USA 103, 8402–8407 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celià-Terrassa, T. et al. Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat. Cell Biol. 19, 711–723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajman, M. & Schratt, G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 144, 2310–2322 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borromeo, M. D. et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 16, 1259–1272 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudin, C. M. et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289–297 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, M. et al. Identification of lineage specific transcriptional factor defined molecular subtypes in small cell bladder cancer. Eur. Urol. S0302-2838, 02830 (2023).


    Google Scholar
     

  • Priemer, D. S. et al. Small-cell carcinomas of the urinary bladder and prostate: TERT promoter mutation status differentiates sites of malignancy and provides evidence of common clonality between small-cell carcinoma of the urinary bladder and urothelial carcinoma. Eur. Urol. Focus. 4, 880–888 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, L. et al. Molecular genetic evidence for a common clonal origin of urinary bladder small cell carcinoma and coexisting urothelial carcinoma. Am. J. Pathol. 166, 1533–1539 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, S. R. et al. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Mol. Cancer 16, 99 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ClinicalTrials.gov. Atezolizumab Plus Etoposide and Platinum in Small Cell Bladder Cancer clinical trials.gov NCT05312671. https://clinicaltrials.gov/study/NCT05312671 (2023).

  • Wang, L. et al. A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes. Proc. Natl Acad. Sci. USA 117, 201915770 (2019).


    Google Scholar
     

  • Muranaka, T. et al. Clinical characteristics and treatment outcomes of patients with small cell carcinoma of the urinary bladder. Curr. Urol. 16, 136–141 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23, 1–10 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ireland, A. S. et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 38, 60–78.e12 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman-Censits, J. et al. Small cell bladder cancer response to second-line and beyond checkpoint inhibitor therapy: retrospective experience. Clin. Genitourin. Cancer 19, 176–181 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. The Cancer Genome Atlas expression subtypes stratify response to checkpoint inhibition in advanced urothelial cancer and identify a subset of patients with high survival probability. Eur. Urol. 75, 961–964 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • clinicaltrials.gov. National Cancer Institute. Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung (NCT05058651). https://clinicaltrials.gov/study/NCT05058651 (2024).

  • Hoffman-Censits, J. H. et al. Expression of Nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl. Immunohistochem. Mol. Morphol. 29, 619–625 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31, 270–285 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalishazar, M. D. et al. MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin. Cancer Res. 25, 5107–5121 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moch H, H. P., Ulbright TM, Retuer VE. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th edn, 77–133 (IARC Press, 2016).

  • Lee, K. H. et al. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta Mol. Cell Res. 1843, 2055–2066 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Savi, F. et al. miR-296/scribble axis is deregulated in human breast cancer and miR-296 restoration reduces tumour growth in vivo. Clin. Sci. 127, 233–242 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wei, J. J. et al. Regulation of HMGA1 expression by MicroRNA-296 affects prostate cancer growth and invasion. Clin. Cancer Res. 17, 1297–1305 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaira, V. et al. MiR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 31, 27–38 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gentili, C. et al. Chromosome missegregation associated with RUVBL1 deficiency. PLoS ONE 10, e0133576 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniuchi, K. et al. RUVBL1 directly binds actin filaments and induces formation of cell protrusions to promote pancreatic cancer cell invasion. Int. J. Oncol. 45, 1945–1954 (2014).

    Article 

    Google Scholar
     

  • Ross, J. S. et al. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carcinoma. Clin. Cancer Res. 20, 68–75 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isharwal, S. et al. Intratumoral heterogeneity of ERBB2 amplification and HER2 expression in micropapillary urothelial carcinoma. Hum. Pathol. 77, 63–69 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinnall, U. et al. Micropapillary urothelial carcinoma: evaluation of HER2 status and immunohistochemical characterization of the molecular subtype. Hum. Pathol. 80, 55–64 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, S. A. et al. Outcome of patients with micropapillary urothelial carcinoma following radical cystectomy: ERBB2 (HER2) amplification identifies patients with poor outcome. Mod. Pathol. 27, 758–764 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Martino, M. et al. Impact of ERBB2 mutations on in vitro sensitivity of bladder cancer to lapatinib. Cancer Biol. Ther. 15, 1239–1247 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oudard, S. et al. Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer 51, 45–54 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 73, 7162–7167 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allory, Y. et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur. Urol. 65, 360–366 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, D. et al. High prevalence of TERT promoter mutations in micropapillary urothelial carcinoma. Virchows Arch. 469, 427–434 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, J. H., Lee, C. U., Lee, D. H. & Song, W. Expression and prognostic implication of PD-L1 in patients with urothelial carcinoma with variant histology (squamous differentiation or micropapillary) undergoing radical cystectomy. Biomedicines 10, 910 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. B7-H4 correlates with clinical outcome and immunotherapeutic benefit in muscle-invasive bladder cancer. Eur. J. Cancer 171, 133–142 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fox, M. D. et al. Plasmacytoid urothelial carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical analysis of 49 cases. Am. J. Clin. Pathol. 147, 500–506 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diamantopoulos, L. N. et al. Plasmacytoid urothelial carcinoma: response to chemotherapy and oncologic outcomes. Bladder Cancer 6, 71–81 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warrick, J. I. et al. FOXA1 and CK14 as markers of luminal and basal subtypes in histologic variants of bladder cancer and their associated conventional urothelial carcinoma. Virchows Arch. 471, 337–345 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teo, M. Y. et al. Natural history, response to systemic therapy, and genomic landscape of plasmacytoid urothelial carcinoma. Br. J. Cancer 124, 1214–1221 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trillsch, F. et al. E-cadherin fragments as potential mediators for peritoneal metastasis in advanced epithelial ovarian cancer. Br. J. Cancer 114, 213–220 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Palsgrove, D. N. et al. Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent TERT promoter mutations. Hum. Pathol. 85, 1–9 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • USCAP 2022 Abstracts. Genitourinary pathology (including renal tumors) (522-659). Mod. Pathol. 35, 657–806 (2022).

    Article 

    Google Scholar
     

  • Taga, M. et al. A potential role for 6-sulfo sialyl Lewis X in metastasis of bladder urothelial carcinoma. Urol. Oncol. 33, 496.e491–499 (2015).

    Article 

    Google Scholar
     

  • Weller, A., Isenmann, S. & Vestweber, D. Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor alpha. J. Biol. Chem. 267, 15176–15183 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majewski et al. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Lab. Invest 88, 694–721 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 174, 1033 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles