Medford, A. & Maskell, N. Pleural effusion. Postgrad. Med. J. 81, 702–710 (2005).
Heffner, J. E. Diagnosis and management of malignant pleural effusions. Respirology 13, 5–20 (2008).
Clive, A. O. et al. Predicting survival in malignant pleural effusion: Development and validation of the LENT prognostic score. Thorax 69, 1098–1104 (2014).
Metzenmacher, M. et al. Prognostic factors in nonsmall cell lung cancer: Insights from the German CRISP registry. Eur. Respir. J. 61, 2201336 (2023).
Kasapoglu, U. S. et al. Prognostic factors affecting survival in non-small cell lung carcinoma patients with malignant pleural effusions. Clin. Respir. J. 10, 791–799 (2016).
William, W. N. et al. Revisiting stage IIIB and IV non-small cell lung cancer: Analysis of the surveillance, epidemiology, and end results data. Chest 136, 701–709 (2009).
Grosu, H. B., Kazzaz, F., Vakil, E., Molina, S. & Ost, D. Sensitivity of initial thoracentesis for malignant pleural effusion stratified by tumor type in patients with strong evidence of metastatic disease. Respiration 96, 363–369 (2018).
Hooper, C., Lee, Y. C. G. & Maskell, N. Investigation of a unilateral pleural effusion in adults: British thoracic society pleural disease guideline 2010. Thorax 65(Suppl 2), ii4 (2010).
Zhang, M., Yan, L., Lippi, G. & de Hu, Z. Pleural biomarkers in diagnostics of malignant pleural effusion: A narrative review. Transl. Lung Cancer Res. 10, 1557–1570 (2021).
Bao, Q. L. et al. Diagnostic utility of LUNX mRNA and VEGF mRNA in pleural fluid for differentiating benign from malignant origin. Jpn. J. Clin. Oncol. 44, 1198–1205 (2014).
Sun, W., Li, J., Jiang, H. G., Ge, L. P. & Wang, Y. Diagnostic value of MUC1 and EpCAM mRNA as tumor markers in differentiating benign from malignant pleural effusion. QJM 107, 1001–1007 (2014).
Li, Y. et al. BJ-TSA-9, a novel human tumor-specific gene, has potential as a biomarker of lung cancer. Neoplasia 7, 1073–1080 (2005).
Chen, H.-Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).
Li, X. Y. et al. Transcription expression and clinical significance of dishevelled-3 mRNA and δ-catenin mRNA in pleural effusions from patients with lung cancer. Clin. Dev. Immunol. 2012, (2012).
Bao, Q. L. et al. Diagnostic utility of LUNX mRNA and VEGF mRNA in pleural fluid for differentiating benign from malignant origin. Jpn. J. Clin. Oncol. 44, 1198–1205 (2014).
Passebosc-Faure, K. et al. Evaluation of a panel of molecular markers for the diagnosis of malignant serous effusions. Clin. Cancer Res. 11, 6862–6867 (2005).
Bao, Q., Xu, Y., Ding, M. & Chen, P. Identification of differentially expressed miRNAs in differentiating benign from malignant pleural effusion. Hereditas 157, 1 (2020).
Porcel, J. M., Esquerda, A., Vives, M. & Bielsa, S. Etiology of pleural effusions: Analysis of more than 3,000 consecutive thoracenteses. Arch. Bronconeumol. 50, 161–165 (2014).
Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. Mayo Clin. 83, 584 (2008).
Chian, C. F. et al. Panels of tumor-derived RNA markers in peripheral blood of patients with non-small cell lung cancer: Their dependence on age, gender and clinical stages. Oncotarget 7, 50582–50595 (2016).
Sheu, C. C. et al. Combined detection of CEA, CK-19 and c-met mRNAs in peripheral blood: A highly sensitive panel for potential molecular diagnosis of non-small cell lung cancer. Oncology 70, 203–211 (2006).
Lv, M. et al. Diagnostic and predictive role of cell-free midkine in malignant pleural effusions. J. Cancer Res. Clin. Oncol. 139, 543–549 (2013).
Kaul, V., McCracken, D. J., Rahman, N. M. & Epelbaum, O. Contemporary approach to the diagnosis of malignant pleural effusion. Ann. Am. Thorac. Soc. 16, 1099–1106 (2019).
Sun, Y., Wu, G. P., Fang, C. Q. & Liu, S. L. Diagnostic utility of MOC-31, HBME-1 and MOC-31 mRNA in distinguishing between carcinoma cells and reactive mesothelial cells in pleural effusions. Acta cytol. 53(6), 619–624 (2009).
Parker, L. L. & Piwnica-Worms, H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257, 1955–1957 (1992).
Eischen, C. M. & Lozano, G. p53 and MDM2: Antagonists or partners in crime?. Cancer Cell 15, 161–162 (2009).
Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26, 1179–1195 (2012).
Jansen, N. S. & Vertegaal, A. C. O. A chain of events: Regulating target proteins by SUMO polymers. Trends Biochem. Sci. 46, 113–123 (2021).
Li, W., Peng, X., Lang, J. & Xu, C. Targeting mouse double minute 2: Current concepts in DNA damage repair and therapeutic approaches in cancer. Front. Pharmacol. 11, 631 (2020).
Moncho-Amor, V. et al. Role of dusp6 phosphatase as a tumor suppressor in non-small cell lung cancer. Int. J. Mol. Sci. 20, 2036 (2019).
Noro, R. et al. A two-gene prognostic classifier for early-stage lung squamous cell carcinoma in multiple large-scale and geographically diverse cohorts. J. Thorac. Oncol. 12, 65–76 (2017).
Diker, O., Olgun, P., Balyemez, U. & Sigit Ikiz, S. Development of a novel predictive-prognostic scoring index for immune checkpoint inhibitors in advanced non-small cell lung cancer. Cureus 15, (2023).
Zeng, J. et al. Labyrinthin expression is associated with poor prognosis in patients with non-small-cell lung cancer. Cancers 15, 924 (2023).
Wu, Y. Y. et al. CPEB4 and IRF4 expression in peripheral mononuclear cells are potential prognostic factors for advanced lung cancer. J. Formos. Med. Assoc. 116, 114–122 (2017).
Chang, C.-W. A Gene expression profile of peripheral blood in colorectal cancer. J. Microb. Biochem. Technol. 6, 102–109 (2014).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).
Hosmer, D. W. & Lemeshow, S. Applied logistic regression. Appl. Logist. Regres. https://doi.org/10.1002/0471722146 (2005).