Saturday, June 10, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

NAPE-PLD deletion in stress-TRAPed neurons results in an anxiogenic phenotype – Translational Psychiatry


  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009;89:309–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busquets-Garcia A, Bains J, Marsicano G. CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacol 2018;43:4–20.

    Article 
    CAS 

    Google Scholar
     

  • Hussain Z, Uyama T, Tsuboi K, Ueda N. Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1546–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev. 2008;108:1687–707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leishman E, Mackie K, Luquet S, Bradshaw HB. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochimica Et Biophysica Acta Bba – Mol Cell Biol Lipids. 2016;1861:491–500.

    CAS 

    Google Scholar
     

  • Leung D, Saghatelian A, Simon GM, Cravatt BF. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry. 2006;45:4720–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuboi K, Okamoto Y, Ikematsu N, Inoue M, Shimizu Y, Uyama T, et al. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochimica Et Biophysica Acta Bba – Mol Cell Biol Lipids. 2011;1811:565–77.

    CAS 

    Google Scholar
     

  • Egertova M, Simon GM, Cravatt BF, Elphick MR. Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: A new perspective on N-acylethanolamines as neural signaling molecules. J Comp Neurol. 2008;506:604–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maccarrone M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci. 2017;10:166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palese F, Pontis S, Realini N, Piomelli D. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration. Sci Rep. 2019;9:15927.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886:172–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manzanares J, Corchero J, Fuentes JA. Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats. Brain Res. 1999;839:173–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology. 2004;145:5431–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wade MR, Degroot A, Nomikos GG. Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur J Pharm. 2006;551:162–7.

    Article 
    CAS 

    Google Scholar
     

  • Cota D. The role of the endocannabinoid system in the regulation of hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinol. 2008;20:35–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015;16:705–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radley JJ, Sawchenko PE. A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci. 2011;31:9683–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill MN, McLaughlin RJ, Morrish AC, Viau V, Floresco SB, Hillard CJ, et al. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacol 2009;34:2733–45.

    Article 
    CAS 

    Google Scholar
     

  • Cajanus K, Holmstrom EJ, Wessman M, Anttila V, Kaunisto MA, Kalso E. Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women treated for breast cancer. Pain. 2016;157:361–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spagnolo PA, Ramchandani VA, Schwandt ML, Kwako LE, George DT, Mayo LM, et al. FAAH Gene Variation Moderates Stress Response and Symptom Severity in Patients with Posttraumatic Stress Disorder and Comorbid Alcohol Dependence. Alcohol Clin Exp Res. 2016;40:2426–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinna G. Biomarkers for PTSD at the Interface of the Endocannabinoid and Neurosteroid Axis. Front Neurosci. 2018;12:482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navarrete F, Garcia-Gutierrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, et al. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry. 2020;11:315.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dincheva I, Drysdale AT, Hartley CA, Johnson DC, Jing D, King EC, et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat Commun. 2015;6:6395.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TT, Gray JM, et al. Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci. 2010;107:9406–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill MN, Kumar SA, Filipski SB, Iverson M, Stuhr KL, Keith JM, et al. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatr. 2013;18:1125–35.

    Article 
    CAS 

    Google Scholar
     

  • Bluett RJ, Gamble-George JC, Hermanson DJ, Hartley ND, Marnett LJ, Patel S. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation. Transl Psychiatry. 2014;4:e408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreira FA, Kaiser N, Monory K, Lutz B. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacol. 2008;54:141–50.

    Article 
    CAS 

    Google Scholar
     

  • Haller J, Barna I, Barsvari B, Pelczer KG, Yasar S, Panlilio LV, et al. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats. Psychopharmacol. 2009;204:607–16.

    Article 
    CAS 

    Google Scholar
     

  • McLaughlin RJ, Hill MN, Gorzalka BB. A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior. Neurosci Biobehav Rev. 2014;42:116–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry. 2007;62:1103–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill MN, Lee FS. Endocannabinoids and Stress Resilience: Is Deficiency Sufficient to Promote Vulnerability? Biol Psychiatry. 2016;79:792–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worley NB, Hill MN, Christianson JP. Prefrontal endocannabinoids, stress controllability and resilience: A hypothesis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:180–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morena M, Aukema RJ, Leitl KD, Rashid AJ, Vecchiarelli HA, Josselyn SA, et al. Upregulation of Anandamide Hydrolysis in the Basolateral Complex of Amygdala Reduces Fear Memory Expression and Indices of Stress and Anxiety. J Neurosci. 2019;39:1275–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayo LM, Asratian A, Linde J, Morena M, Haataja R, Hammar V, et al. Elevated Anandamide, Enhanced Recall of Fear Extinction, and Attenuated Stress Responses Following Inhibition of Fatty Acid Amide Hydrolase: A Randomized, Controlled Experimental Medicine Trial. Biol Psychiatry. 2020;87:538–47.

    Article 
    PubMed 

    Google Scholar
     

  • Micale V, Stepan J, Jurik A, Pamplona FA, Marsch R, Drago F, et al. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J Psychiatr Res. 2017;90:46–59.

    Article 
    PubMed 

    Google Scholar
     

  • Hartmann A, Fassini A, Scopinho A, Correa FM, Guimaraes FS, Lisboa SF, et al. Role of the endocannabinoid system in the dorsal hippocampus in the cardiovascular changes and delayed anxiety-like effect induced by acute restraint stress in rats. J Psychopharmacol. 2019;33:606–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griebel G, Stemmelin J, Lopez-Grancha M, Fauchey V, Slowinski F, Pichat P, et al. The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Sci Rep. 2018;8:2416.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buran I, Etem EO, Tektemur A, Elyas H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci Lett. 2017;656:51–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray JM, Chaouloff F, Hill MN. To Stress or Not to Stress: A Question of Models. Curr Protoc Neurosci. 2015;70:1–22.

    Article 

    Google Scholar
     

  • Golden SA, Covington HE 3rd, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeNardo L, Luo L. Genetic strategies to access activated neurons. Curr Opin Neurobiol. 2017;45:121–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis. Neuron. 2014;83:189–201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, et al. Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron. 2015;86:1369–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell. 2007;131:391–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruehle S, Remmers F, Romo-Parra H, Massa F, Wickert M, Wörtge S, et al. Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions. J Neurosci. 2013;33:10264–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacol. 1985;85:367–70.

    Article 
    CAS 

    Google Scholar
     

  • Deacon RMJ. Assessing nest building in mice. Nat Protoc. 2006;1:1117.

    Article 
    PubMed 

    Google Scholar
     

  • Post JM, Lerner R, Schwitter C, Lutz B, Lomazzo E, Bindila L. Lipidomics and Transcriptomics in Neurological Diseases. J Vis Exp. 2022. https://doi.org/10.3791/59423.

  • Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. Academic Press; 2001. https://books.google.de/books?id=tZdjQgAACAAJ.


    Google Scholar
     

  • R: A language and environment for statistical computing. R Core Team, R Foundation for Statistical Computing: Vienna, Austria, 2019. https://www.R-project.org/.

  • Todorov H, Searle-White E, Gerber S. Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: A Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial. Plos One. 2020;15:e0230798.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarante FF, Vila-Verde C, Detoni VL, Ferreira-Junior NC, Guimaraes FS, Campos AC. Cannabinoid Modulation of the Stressed Hippocampus. Front Mol Neurosci. 2017;10:411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinod KY, Xie S, Psychoyos D, Hungund BL, Cooper TB, Tejani-Butt SM. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats. Plos One. 2012;7:e36743.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinol. 2009;34:S186–95.

    Article 
    CAS 

    Google Scholar
     

  • Touma C, Gassen NC, Herrmann L, Cheung-Flynn J, Bull DR, Ionescu IA, et al. FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry. 2011;70:928–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartmann J, Wagner KV, Liebl C, Scharf SH, Wang XD, Wolf M, et al. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacol. 2012;62:332–9.

    Article 
    CAS 

    Google Scholar
     

  • Codagnone MG, Kara N, Ratsika A, Levone BR, Wouw M, van de, Tan LA, et al. Inhibition of FKBP51 induces stress resilience and alters hippocampal neurogenesis. Mol Psychiatry. 2022;27:4928–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armario A. The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors? CNS Neurological Disord – Drug Targets. 2006;5:485–501.

    Article 

    Google Scholar
     

  • Heilig M, Koob GF, Ekman R, Britton KT. Corticotropin-releasing factor and neuropeptide Y: role in emotional integration. Trends Neurosci. 1994;17:80–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGuire JL, Larke LE, Sallee FR, Herman JP, Sah R. Differential Regulation of Neuropeptide Y in the Amygdala and Prefrontal Cortex during Recovery from Chronic Variable Stress. Front Behav Neurosci. 2011;5:54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichmann F, Holzer P. Neuropeptide Y: A stressful review. Neuropeptides. 2016;55:99–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajdyk TJ, Johnson PL, Leitermann RJ, Fitz SD, Dietrich A, Morin M, et al. Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic-adrenal-pituitary axis activity or hyperthermia. J Neurosci. 2008;28:893–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathe AA. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacol 2012;37:350–63.

    Article 
    CAS 

    Google Scholar
     

  • Xapelli S, Bernardino L, Ferreira R, Grade S, Silva AP, Salgado JR, et al. Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity: a role for microglia. Eur J Neurosci. 2008;27:2089–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daskalakis NP, Kloet ERD, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci. 2015;8:68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leschik J, Gentile A, Cicek C, Péron S, Tevosian M, Beer A, et al. Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Prog Neurobiol. 2022;217:102333.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaletel I, Filipovic D, Puskas N. Hippocampal BDNF in physiological conditions and social isolation. Rev Neurosci. 2017;28:675–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maymon N, Zer-Aviv TM, Sabban EL, Akirav I. Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacol. 2020;162:107804.

    Article 
    CAS 

    Google Scholar
     

  • Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci. 2017;11:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Amazit L, Lombes M, Menuet DL. Crosstalk Between Glucocorticoid Receptor and Early-growth Response Protein 1 Accounts for Repression of Brain-derived Neurotrophic Factor Transcript 4 Expression. Neurosci. 2019;399:12–27.

    Article 
    CAS 

    Google Scholar
     

  • Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacol 2016;41:80–102.

    Article 
    CAS 

    Google Scholar
     

  • Kavalali ET. The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci. 2015;16:5–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velasco EMF, de, Hearing M, Xia Z, Victoria NC, Luján R, Wickman K. Sex differences in GABABR-GIRK signaling in layer 5/6 pyramidal neurons of the mouse prelimbic cortex. Neuropharmacol. 2015;95:353–60.

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: