Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Objective wearable measures correlate with self-reported chronic pain levels in people with spinal cord stimulation systems – npj Digital Medicine


  • Steingrímsdóttir, Ó. A., Landmark, T., Macfarlane, G. J. & Nielsen, C. S. Defining chronic pain in epidemiological studies: a systematic review and meta-analysis. Pain 158, 2092–2107 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Russo, C. M. & Brose, W. G. Chronic pain. Annu. Rev. Med. 49, 123 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N. & Turk, D. C. The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychol. Bull. 133, 581 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Taylor, R. S., Van Buyten, J.-P. & Buchser, E. Spinal cord stimulation for complex regional pain syndrome: a systematic review of the clinical and cost-effectiveness literature and assessment of prognostic factors. Eur. J. Pain. 10, 91–101 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Deer, T. et al. Ultra-Low Energy Cycled Burst Spinal Cord Stimulation Yields Robust Outcomes in Pain, Function, and Affective Domains: A Subanalysis From Two Prospective, Multicenter, International Clinical Trials. Neuromodulation Technol. Neural Interface 25, 137–144 (2021).

    Article 

    Google Scholar
     

  • Deer, T. R. et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial. Pain 158, 669–681 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kapural, L. et al. Treatment of nonsurgical refractory back pain with high-frequency spinal cord stimulation at 10 kHz: 12-month results of a pragmatic, multicenter, randomized controlled trial. J. Neurosurg. Spine 11, 1–12 (2022).


    Google Scholar
     

  • Deer, T. R. et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months. PAIN 158, 669–681 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Goudman, L. et al. Patient Selection for Spinal Cord Stimulation in Treatment of Pain: Sequential Decision-Making Model—A Narrative Review. J. pain. Res. 15, 1163 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goudman, L., Brouns, R., Linderoth, B. & Moens, M. Effects of spinal cord stimulation on heart rate variability in patients with failed back surgery syndrome: comparison between a 2-lead ECG and a wearable device. Neuromodulation Technol. Neural Interface 24, 512–519 (2021).

    Article 

    Google Scholar
     

  • Thong, I. S. K., Jensen, M. P., Miro, J. & Tan, G. The validity of pain intensity measures: what do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain. 18, 99–107 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Farrar, J. T., Young, J. P., LaMoreaux, L., Werth, J. L. & Poole, R. M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. PAIN 94, 149–158 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Dworkin, R. H. et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J. Pain. Off. J. Am. Pain. Soc. 9, 105–121 (2008).

    Article 

    Google Scholar
     

  • Hays, R. D., Spritzer, K. L., Schalet, B. D. & Cella, D. PROMIS®-29 v2. 0 profile physical and mental health summary scores. Qual. Life Res. 27, 1885–1891 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, M. J. L., Lynch, M. E. & Clark, A. J. Dimensions of catastrophic thinking associated with pain experience and disability in patients with neuropathic pain conditions. Pain 113, 310–315 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Fairbank, J. C., Couper, J., Davies, J. B. & O’Brien, J. P. The Oswestry low back pain disability questionnaire. Physiotherapy 66, 271–273 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Cella, D. et al. The Patient-Reported Outcomes Measurement Information System (PROMIS): progress of an NIH Roadmap cooperative group during its first two years. Med. Care 45, S3 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannon, D. S. et al. The PHQ-9 as a brief assessment of lifetime major depression. Psychol. Assess. 19, 247 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Geisser, M. E. et al. Contributions of change in clinical status parameters to Patient Global Impression of Change (PGIC) scores among persons with fibromyalgia treated with milnacipran. PAIN® 149, 373–378 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Leroux, A., Rzasa-Lynn, R., Crainiceanu, C. & Sharma, T. Wearable devices: current status and opportunities in pain assessment and management. Digit. Biomark. 5, 89–102 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagedorn, J. M. et al. Differences in calculated percentage improvement versus patient-reported percentage improvement in pain scores: a review of spinal cord stimulation trials. Reg. Anesth. Pain. Med. 46, 293–297 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pilitsis, J. G., Fahey, M., Custozzo, A., Chakravarthy, K. & Capobianco, R. Composite Score is a Better Reflection of Patient Response to Chronic Pain Therapy Compared With Pain Intensity Alone. Neuromodulation Technol. Neural Interface 24, 68–75 (2020).

    Article 

    Google Scholar
     

  • Caramia, C. et al. IMU-based classification of Parkinson’s disease from gait: A sensitivity analysis on sensor location and feature selection. IEEE J. Biomed. health Inform. 22, 1765–1774 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maceira-Elvira, P., Popa, T., Schmid, A.-C. & Hummel, F. C. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J. Neuroeng. Rehabil. 16, 1–18 (2019).

    Article 

    Google Scholar
     

  • Yan, X., Li, H., Li, A. R. & Zhang, H. Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Autom. Constr. 74, 2–11 (2017).

    Article 

    Google Scholar
     

  • Motl, R. W., McAuley, E., Snook, E. M. & Gliottoni, R. C. Physical activity and quality of life in multiple sclerosis: intermediary roles of disability, fatigue, mood, pain, self-efficacy and social support. Psychol. Health Med. 14, 111–124 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smuck, M., Tomkins-Lane, C., Ith, M. A., Jarosz, R. & Kao, M. J. Physical performance analysis: A new approach to assessing free-living physical activity in musculoskeletal pain and mobility-limited populations. PLoS One 12, e0172804 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomkins-Lane, C. et al. Objective features of sedentary time and light activity differentiate people with low back pain from healthy controls: a pilot study. Spine J. 22, 629–634 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Smuck, M. et al. Objective measurement of function following lumbar spinal stenosis decompression reveals improved functional capacity with stagnant real-life physical activity. Spine J. 18, 15–21 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Rodríguez-Fernández, A., Lobo-Prat, J. & Font-Llagunes, J. M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J. Neuroeng. Rehabil. 18, 1–21 (2021).

    Article 

    Google Scholar
     

  • Avila, F. R. et al. Wearable electronic devices for chronic pain intensity assessment: A systematic review. Pain. Pract. 21, 955–965 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, S., Song, S., Jia, F. & Gao, G. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 7, 4638–4648 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathak, Y. J. et al. Digital health integration with neuromodulation therapies: The future of patient-centric innovation in neuromodulation. Front. Digit. Health 3, 618959 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kushioka, J. et al. Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors. Sens. (Basel) 22, 9301 (2022).

    Article 

    Google Scholar
     

  • Costa, N. et al. Are objective measures of sleep and sedentary behaviours related to low back pain flares? Pain 163, 1829–1837 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Perraudin, C. G. M. et al. Observational Study of a Wearable Sensor and Smartphone Application Supporting Unsupervised Exercises to Assess Pain and Stiffness. Digit Biomark. 2, 106–125 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Abbod, M. & Shieh, J.-S. Pain and stress detection using wearable sensors and devices—A review. Sensors 21, 1030 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naeini, E. K., et al. An edge-assisted and smart system for real-time pain monitoring. in 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 47-52 (IEEE, 2019).

  • Sett, N., et al. Are you in pain? Predicting pain and stiffness from wearable sensor activity data. in International Conference on Innovative Techniques and Applications of Artificial Intelligence 183-197 (Springer, 2019).

  • Chhikara, A., Rice, A., McGregor, A. H. & Bello, F. Wearable device for monitoring disability associated with low back pain. World 10, 13 (2008).


    Google Scholar
     

  • Koenig, J., Loerbroks, A., Jarczok, M. N., Fischer, J. E. & Thayer, J. F. Chronic pain and heart rate variability in a cross-sectional occupational sample. Clin. J. pain. 32, 218–225 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinforma. 19, 1236–1246 (2018).

    Article 

    Google Scholar
     

  • Qayyum, A., Qadir, J., Bilal, M. & Al-Fuqaha, A. Secure and robust machine learning for healthcare: A survey. IEEE Rev. Biomed. Eng. 14, 156–180 (2020).

    Article 

    Google Scholar
     

  • Waring, J., Lindvall, C. & Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 104, 101822 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Falla, D., Devecchi, V., Jimenez-Grande, D., Rugamer, D. & Liew, B. X. W. Machine learning approaches applied in spinal pain research. J. Electromyogr. Kinesiol 61, 102599 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lotsch, J. & Ultsch, A. Machine learning in pain research. Pain 159, 623–630 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lotsch, J., Ultsch, A., Mayer, B. & Kringel, D. Artificial intelligence and machine learning in pain research: a data scientometric analysis. Pain. Rep. 7, e1044 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miettinen, T. et al. Machine learning suggests sleep as a core factor in chronic pain. Pain 162, 109–123 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jenssen, M. D. K. et al. Machine learning in chronic pain research: a scoping review. Appl. Sci. 11, 3205 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dudarev, V., Zhang, C., Barral, O., Davis, G. & Enns, J. T. Night-time cardiac metrics from a wearable sensor predict intensity of next-day chronic pain. Procedia Comput. Sci. 206, 34–44 (2022).

    Article 

    Google Scholar
     

  • Evans, S. et al. Heart rate variability as a biomarker for autonomic nervous system response differences between children with chronic pain and healthy control children. J. Pain. Res. 6, 449 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamm-Faber, T. E., Gültuna, I., van Gorp, E.-J. & Aukes, H. High-dose spinal cord stimulation for treatment of chronic low back pain and leg pain in patients with FBSS, 12-month results: a prospective pilot study. Neuromodulation Technol. Neural Interface 23, 118–125 (2020).

    Article 

    Google Scholar
     

  • Kirketeig, T., Schultheis, C., Zuidema, X., Hunter, C. W. & Deer, T. Burst spinal cord stimulation: a clinical review. Pain. Med. 20, S31–S40 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beukenhorst, A. L., Schultz, D. M., McBeth, J., Sergeant, J. C. & Dixon, W. G. Are weather conditions associated with chronic musculoskeletal pain? Review of results and methodologies. Pain 161, 668–683 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Barkley, J. E. et al. Increased Physical Activity and Reduced Pain with Spinal Cord Stimulation: A 12-Month Study. Int. J. Exerc. Sci. 13, 1583 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dueñas, M., Ojeda, B., Salazar, A., Mico, J. A. & Failde, I. A review of chronic pain impact on patients, their social environment and the health care system. J. Pain. Res. 9, 457 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramineni, T. et al. The impact of spinal cord stimulation on sleep patterns. Neuromodulation Technol. Neural Interface 19, 477–481 (2016).

    Article 

    Google Scholar
     

  • Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public Health 5, 258 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sperandei, S. Understanding logistic regression analysis. Biochem. Med. (Zagreb) 24, 12–18 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Boser, B. E., Guyon, I. M. & Vapnik, V. N. A training algorithm for optimal margin classifiers. in Proceedings of the fifth annual workshop on Computational learning theory 144–152 (1992).

  • Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. theory 13, 21–27 (1967).

    Article 

    Google Scholar
     

  • Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Dorogush, A. V., Ershov, V. & Gulin, A. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inform Process. Syst. 30, 4768–4777 (2017).


    Google Scholar
     

  • Lundberg, S. M., Erion, G. G. & Lee, S.-I. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018).

  • Cella, D. et al. PROMIS® adult health profiles: efficient short-form measures of seven health domains. Value Health 22, 537–544 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fairbank, J. C. & Pynsent, P. B. The Oswestry disability index. Spine 25, 2940–2953 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: