Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Patients with schizophrenia and bipolar disorder display a similar global gene expression signature in whole blood that reflects elevated proportion of immature neutrophil cells with association to lipid changes – Translational Psychiatry


  • Moreno-Küstner B, Martín C, Pastor L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS ONE. 2018;13:e0195687.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrari AJ, Stockings E, Khoo J-P, Erskine HE, Degenhardt L, Vos T, et al. The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord. 2016;18:440–50.

    Article 
    PubMed 

    Google Scholar
     

  • Simeone JC, Ward AJ, Rotella P, Collins J, Windisch R. An evaluation of variation in published estimates of schizophrenia prevalence from 1990─2013: a systematic literature review. BMC Psychiatry. 2015;15:193.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merikangas KR, Jin R, He J-P, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011;68:241–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weye N, Momen NC, Christensen MK, Iburg KM, Dalsgaard S, Laursen TM, et al. Association of specific mental disorders with premature mortality in the danish population using alternative measurement methods. JAMA Netw Open. 2020;3:e206646–e206646.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correll CU, Ng-Mak DS, Stafkey-Mailey D, Farrelly E, Rajagopalan K, Loebel A. Cardiometabolic comorbidities, readmission, and costs in schizophrenia and bipolar disorder: a real-world analysis. Ann Gen Psychiatry. 2017;16:1–8.

    Article 

    Google Scholar
     

  • Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forstner AJ, Hecker J, Hofmann A, Maaser A, Reinbold CS, Mühleisen TW, et al. Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS ONE. 2017;12:e0171595.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Pavlides JMW, et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705–1715.e16.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 2013;9:e1003455.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72.

    Article 
    PubMed 

    Google Scholar
     

  • Lee PH, Anttila V, Won H, Feng YCA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–1482.e11.

    Article 

    Google Scholar
     

  • Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mould AW, Hall NA, Milosevic I, Tunbridge EM. Targeting synaptic plasticity in schizophrenia: insights from genomic studies. Trends Mol Med. 2021;27:1022–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlström EL, Niazi A, Etemadikhah M, Halvardson J, Enroth S, Stockmeier CA, et al. Transcriptome analysis of post-mortem brain tissue reveals up-regulation of the complement cascade in a subgroup of schizophrenia patients. Genes (Basel). 2021;12:1242.

    Article 

    Google Scholar
     

  • Childers E, Bowen EFW, Harker Rhodes C, Granger R. Immune-Related Genomic Schizophrenic Subtyping Identified in DLPFC Transcriptome. Genes (Basel). 2022;13:1200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, et al. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res. 2011;89:1218–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardiner EJ, Cairns MJ, Liu B, Beveridge NJ, Carr V, Kelly B, et al. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res. 2013;47:425–37.

    Article 
    PubMed 

    Google Scholar
     

  • Sainz J, Mata I, Barrera J, Perez-Iglesias R, Varela I, Arranz MJ, et al. Inflammatory and immune response genes have significantly altered expression in schizophrenia. Mol Psychiatry. 2013;18:1056–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fries GR, Dimitrov DH, Lee S, Braida N, Yantis J, Honaker C, et al. Genome-wide expression in veterans with schizophrenia further validates the immune hypothesis for schizophrenia. Schizophr Res. 2017;192:255–61.

    Article 
    PubMed 

    Google Scholar
     

  • Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry. 2006;11:965–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witt SH, Juraeva D, Sticht C, Strohmaier J, Meier S, Treutlein J, et al. Investigation of manic and euthymic episodes identifies state-and trait-specific gene expression and stab1 as a new candidate gene for bipolar disorder. Transl Psychiatry. 2014;4:e426–e426.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, et al. Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophr Res. 2019;217:124–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, et al. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophr Res. 2016;176:114–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leirer DJ, Iyegbe CO, Di Forti M, Patel H, Carra E, Fraietta S, et al. Differential gene expression analysis in blood of first episode psychosis patients. Schizophr Res. 2019;209:88–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, et al. Similar immune profile in bipolar disorder and schizophrenia: Selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord. 2009;11:726–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reponen EJ, Dieset I, Tesli M, Mørch RH, Aas M, Vedal TSJ, et al. Atherogenic lipid ratios related to myeloperoxidase and C-reactive protein levels in psychotic disorders. Front Psychiatry. 2020;11:672.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elkjaer Greenwood Ormerod MB, Ueland T, Frogner Werner MC, Hjell G, Rødevand L, Sæther LS, et al. Composite immune marker scores associated with severe mental disorders and illness course. Brain Behav Immun—Heal. 2022;24:100483.

    Article 
    CAS 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. http://wwwR-project.org 2018.

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi W, Oshlack A, Smyth GK. Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res. 2010;38:e204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du P, Kibbe WA, Lin SM. lUMI: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24:1547–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunning M, Lynch AEM. illuminaHumanv4.db: Illumina HumanHT12v4 annotation data (chip illuminaHumanv4). R package version 1.26.0. 2015. https://doi.org/10.18129/B9.bioc.illuminaHumanv4.db.

  • Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Storey JD, et al. sva: Surrogate Variable Analysis. R package version 3.30.0. 2018. https://doi.org/10.18129/B9.bioc.sva.

  • Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21:2067–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen L GeneOverlap: An R package to test and visualize gene overlaps. 2016 https://doi.org/10.18129/B9.bioc.GeneOverlap.

  • Huan T, Joehanes R, Schurmann C, Schramm K, Pilling LC, Peters MJ, et al. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking. Hum Mol Genet. 2016;25:ddw288.

    Article 

    Google Scholar
     

  • Bergon A, Belzeaux R, Comte M, Pelletier F, Hervé M, Gardiner EJ, et al. CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophr Res. 2015;168:434–43.

    Article 
    PubMed 

    Google Scholar
     

  • Crespo-Facorro B, Prieto C, Sainz J. Altered gene expression in antipsychotic-induced weight gain. npj Schizophr. 2019;5:7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15:602–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 2017;17:248–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in homeostasis. Immun, Cancer Immun. 2017;46:15–28.


    Google Scholar
     

  • Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11:519–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theilgaard-Mönch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC, et al. The transcriptional program of terminal granulocytic differentiation. Blood. 2005;105:1785–96.

    Article 
    PubMed 

    Google Scholar
     

  • Borregaard N, Theilgaard-Mönch K, Sørensen OE, Cowland JB. Regulation of human neutrophil granule protein expression. Curr Opin Hematol. 2001;8:23–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rørvig S, Østergaard O, Heegaard NHH, Borregaard N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol. 2013;94:711–21.

    Article 
    PubMed 

    Google Scholar
     

  • Montaldo E, Lusito E, Bianchessi V, Caronni N, Scala S, Basso-Ricci L, et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat Immunol. 2022;23:1470–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen PR, Benros ME, Mortensen PB. Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of danish national registers. Schizophr Bull. 2014;40:1526–32.

    Article 
    PubMed 

    Google Scholar
     

  • Lydholm CN, Köhler-Forsberg O, Nordentoft M, Yolken RH, Mortensen PB, Petersen L, et al. Parental infections before, during, and after pregnancy as risk factors for mental disorders in childhood and adolescence: a nationwide Danish study. Biol Psychiatry. 2019;85:317–25.

    Article 
    PubMed 

    Google Scholar
     

  • Köhler-Forsberg O, Petersen L, Gasse C, Mortensen PB, Dalsgaard S, Yolken RH, et al. A nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA Psychiatry. 2019;76:271–9.

    Article 
    PubMed 

    Google Scholar
     

  • Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167:261–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benros ME, Waltoft BL, Nordentoft M, Ostergaard SD, Eaton WW, Krogh J, et al. Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiatry. 2013;70:812–20.

    Article 
    PubMed 

    Google Scholar
     

  • Eaton WW, Byrne M, Ewald H, Mors O, Chen C-Y, Agerbo E, et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry. 2006;163:521–8.

    Article 
    PubMed 

    Google Scholar
     

  • Chen S-J, Chao Y-L, Chen C-Y, Chang C-M, Wu EC-H, Wu C-S, et al. Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study. Br J Psychiatry. 2012;200:374–80.

    Article 
    PubMed 

    Google Scholar
     

  • Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry. 2014;171:218–26.

    Article 
    PubMed 

    Google Scholar
     

  • Cullen AE, Holmes S, Pollak TA, Blackman G, Joyce DW, Kempton MJ, et al. Associations between non-neurological autoimmune disorders and psychosis: a meta-analysis. Biol Psychiatry. 2019;85:35–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benros ME, Nielsen PR, Sc M, Nordentoft M, Eaton WW, Dalton SO, et al. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168:1303–10.

    Article 
    PubMed 

    Google Scholar
     

  • Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21:1696–709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74:15–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munkholm K, Braüner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res. 2013;47:1119–33.

    Article 
    PubMed 

    Google Scholar
     

  • Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes BS, Steiner J, Molendijk ML, Dodd S, Nardin P, Gonçalves C-A, et al. C-reactive protein concentrations across the mood spectrum in bipolar disorder: a systematic review and meta-analysis. Lancet Psychiatry. 2016;3:1147–56.

    Article 
    PubMed 

    Google Scholar
     

  • Fernandes BS, Steiner J, Bernstein H-G, Dodd S, Pasco JA, Dean OM, et al. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry. 2016;21:554–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Núñez C, Stephan-Otto C, Usall J, Bioque M, Lobo A, González-Pinto A, et al. Neutrophil count is associated with reduced gray matter and enlarged ventricles in first-episode psychosis. Schizophr Bull. 2019;45:846–58.

    Article 
    PubMed 

    Google Scholar
     

  • Steiner J, Frodl T, Schiltz K, Dobrowolny H, Jacobs R, Fernandes BS, et al. Innate immune cells and C-reactive protein in acute first-episode psychosis and schizophrenia: relationship to psychopathology and treatment. Schizophr Bull. 2020;46:363–73.

    PubMed 

    Google Scholar
     

  • Nierhaus A, Klatte S, Linssen J, Eismann NM, Wichmann D, Hedke J, et al. Revisiting the white blood cell count: Immature granulocytes count as a diagnostic marker to discriminate between SIRS and sepsis—a prospective, observational study. BMC Immunol. 2013;14:1–8.

    Article 

    Google Scholar
     

  • Sainz J, Prieto C, Ruso-Julve F, Crespo-Facorro B. Blood gene expression profile predicts response to antipsychotics. Front Mol Neurosci. 2018;11:73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillinger T, McCutcheon R, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. Comparative effects of 18 antipsychotics on metabolic function in schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7:64–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali M, Jasmin S, Fariduddin M, Alam SMK, Arslan MI, Biswas SK. Neutrophil elastase and myeloperoxidase mRNA expression in overweight and obese subjects. Mol Biol Rep. 2018;45:1245–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrido-Torres N, Rocha-Gonzalez I, Alameda L, Rodriguez-Gangoso A, Vilches A, Canal-Rivero M, et al. Metabolic syndrome in antipsychotic-naïve patients with first-episode psychosis: a systematic review and meta-analysis. Psychol Med. 2021;51:2307–20.

    Article 
    PubMed 

    Google Scholar
     

  • Xu X, Su S, Wang X, Barnes V, De Miguel C, Ownby D, et al. Obesity is associated with more activated neutrophils in African American male youth. Int J Obes (Lond). 2015;39:26–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudmundsdottir V, Pedersen HK, Mazzoni G, Allin KH, Artati A, Beulens JW, et al. Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study. Genome Med. 2020;12:1–17.

    Article 

    Google Scholar
     

  • Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18:1407–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uribe-Querol E, Rosales C. Neutrophils actively contribute to obesity-associated inflammation and pathological complications. Cells 2022;11:1883.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benschop R, Wei T, Na S. Tumor necrosis factor receptor superfamily member 21: TNFR-related death receptor-6, DR6. Adv Exp Med Biol. 2009;647:186–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan J, Aldrich RW. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature. 2010;466:513–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Perez V, Zhou Y, Ciorba MA, Lingle CJ. The LRRC family of BK channel regulatory subunits: potential roles in health and disease. J Physiol. 2022;600:1357–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284:2606–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grant BF, Hasin DS, Chou SP, Stinson FS, Dawson DA. Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2004;61:1107–15.

    Article 
    PubMed 

    Google Scholar
     

  • Chen J, Bacanu SA, Yu H, Zhao Z, Jia P, Kendler KS, et al. Genetic relationship between schizophrenia and nicotine dependence. Sci Rep. 2016;6:1–10.


    Google Scholar
     

  • Gao X, Jia M, Zhang Y, Breitling LP, Brenner H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics. 2015;7:113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vink JM, Jansen R, Brooks A, Willemsen G, van Grootheest G, de Geus E, et al. Differential gene expression patterns between smokers and non-smokers: cause or consequence? Addict Biol. 2017;22:550–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differentially expressed in individuals with schizophrenia? A systematic review. Mol Psychiatry. 2022;27:1373–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crespo-Facorro B, Prieto C, Sainz J. Schizophrenia gene expression profile reverted to normal levels by antipsychotics. Int J Neuropsychopharmacol. 2015;18:1–7.

    Article 
    CAS 

    Google Scholar
     

  • Lee YC, Chao YL, Chang CE, Hsieh MH, Liu KT, Chen HC, et al. Transcriptome changes in relation to manic episode. Front Psychiatry. 2019;10:280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan LZ, Rollins B, Sequeira A, Byerley W, DeLisi LE, Schatzberg AF, et al. Quantitative trait locus and brain expression of HLA-DPA1 offers evidence of shared immune alterations in psychiatric disorders. Microarrays (Basel, Switzerland). 2016;5:6.

    PubMed 

    Google Scholar
     

  • Wyse C, O’Malley G, Coogan AN, McConkey S, Smith DJ. Seasonal and daytime variation in multiple immune parameters in humans: evidence from 329,261 participants of the UK Biobank cohort. iScience. 2021;24:102255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: