Monday, October 2, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Pituitary crosstalk with bone, adipose tissue and brain – Nature Reviews Endocrinology


  • Rosen, E. D. & Carter-Su, C. in Williams Textbook of Endocrinology (eds Melmed, S. et al.) Ch. 2, 13–41 (Elsevier, 2020).

  • Abe, E. et al. TSH is a negative regulator of skeletal remodeling. Cell 115, 151–162 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, P. et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546, 107–112 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, J. et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature 603, 470–476 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gera, S. et al. FSH-blocking therapeutic for osteoporosis. eLife 11, e78022 (2022).


    Google Scholar
     

  • Gera, S. et al. First-in-class humanized FSH blocking antibody targets bone and fat. Proc. Natl Acad. Sci. USA 117, 28971–28979 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita, K. & Kitano, T. Molecular evolution of the oxytocin–oxytocin receptor system in eutherians. Mol. Phylogenet. Evol. 67, 520–528 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knobloch, H. S. & Grinevich, V. Evolution of oxytocin pathways in the brain of vertebrates. Front. Behav. Neurosci. 8, 31 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimpl, G. & Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleinau, G. & Krause, G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr. Rev. 30, 133–151 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, T., Marians, R. & Latif, R. The TSH receptor reveals itself. J. Clin. Invest. 110, 161–164 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogerd, J., Granneman, J. C., Schulz, R. W. & Vischer, H. F. Fish FSH receptors bind LH: how to make the human FSH receptor to be more fishy? Gen. Comp. Endocrinol. 142, 34–43 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, T. & Andersen, O. The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus), 1: isolation of multiple transcripts encoding full-length and truncated variants of FSH-R. Gen. Comp. Endocrinol. 156, 584–594 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooray, S. N. & Clark, A. J. Melanocortin receptors and their accessory proteins. Mol. Cell Endocrinol. 331, 215–221 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, M. G. et al. Proopiolipomelanocortin peptides in normal pituitary, pituitary tumor, and plasma of normal and Cushing’s horses. Endocrinology 110, 941–954 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baudet, M. L., Sanders, E. J. & Harvey, S. Retinal growth hormone in the chick embryo. Endocrinology 144, 5459–5468 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey, S., Kakebeeke, M. & Sanders, E. J. Growth hormone localization in the neural retina and retinal pigmented epithelium of embryonic chicks. J. Mol. Neurosci. 22, 139–145 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Martinez-Moreno, C. G. et al. Growth hormone protects against kainate excitotoxicity and induces BDNF and NT3 expression in chicken neuroretinal cells. Exp. Eye Res. 166, 1–12 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey, S. & Aramburo, C. Growth hormone: not just a pituitary endocrine. J. Endocr. Disord. 4, 1024 (2017).


    Google Scholar
     

  • Martin, B. T., List, E. O., Kopchick, J. J., Sauve, Y. & Harvey, S. Selective inner retinal dysfunction in growth hormone transgenic mice. Growth Horm. IGF Res. 21, 219–227 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grimbly, C., Martin, B., Karpinski, E. & Harvey, S. Growth hormone production and action in N1E-115 neuroblastoma cells. J. Mol. Neurosci. 39, 117–124 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Mello-Coelho, V. et al. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 139, 3837–3842 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Hull, K. L. & Harvey, S. Growth hormone and reproduction: a review of endocrine and autocrine/paracrine interactions. Int. J. Endocrinol. 2014, 234014 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarzler, P. et al. Selective growth hormone/placental lactogen gene transcription and hormone production in pre- and postmenopausal human ovaries. J. Clin. Endocrinol. Metab. 82, 3337–3341 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Hull, K. L. & Harvey, S. Growth hormone: roles in male reproduction. Endocrine 13, 243–250 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baliram, R. et al. Thyroid and bone: macrophage-derived TSH-beta splice variant increases murine osteoblastogenesis. Endocrinology 154, 4919–4926 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baliram, R., Latif, R., Morshed, S. A., Zaidi, M. & Davies, T. F. T3 regulates a human macrophage-derived TSH-beta splice variant: implications for human bone biology. Endocrinology 157, 3658–3667 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent, B. H. et al. Bone marrow cells produce a novel TSHbeta splice variant that is upregulated in the thyroid following systemic virus infection. Genes Immun. 10, 18–26 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, E. M., Phan, M., Kruger, T. E., Coppenhaver, D. H. & Blalock, J. E. Human lymphocyte production of immunoreactive thyrotropin. Proc. Natl Acad. Sci. USA 80, 6010–6013 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harbour, D. V., Kruger, T. E., Coppenhaver, D., Smith, E. M. & Meyer, W. J. 3rd Differential expression and regulation of thyrotropin (TSH) in T cell lines. Mol. Cell. Endocrinol. 64, 229–241 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein, J. R. & Wang, H. C. Characterization of a novel set of resident intrathyroidal bone marrow-derived hematopoietic cells: potential for immune–endocrine interactions in thyroid homeostasis. J. Exp. Biol. 207, 55–65 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colaianni, G. et al. Regulated production of the pituitary hormone oxytocin from murine and human osteoblasts. Biochem. Biophys. Res. Commun. 411, 512–515 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colaianni, G. et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J. Biol. Chem. 287, 29159–29167 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yakar, S. et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110, 771–781 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Jesus, K., Wang, X. & Liu, J. L. A general IGF-I overexpression effectively rescued somatic growth and bone deficiency in mice caused by growth hormone receptor knockout. Growth Factors 27, 438–447 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bachrach, L. K. et al. Bone mineral, histomorphometry, and body composition in adults with growth hormone receptor deficiency. J. Bone Min. Res. 13, 415–421 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Fritton, J. C. et al. Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J. Bone Min. Res. 25, 235–246 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sun, L. et al. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc. Natl Acad. Sci. USA 105, 4289–4294 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baliram, R. et al. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Invest. 122, 3737–3741 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. M. et al. Thyrotropin, hyperthyroidism, and bone mass. J. Clin. Endocrinol. Metab. 106, e4809–e4821 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novack, D. V. TSH, the bone suppressing hormone. Cell 115, 129–130 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hase, H. et al. TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc. Natl Acad. Sci. USA 103, 12849–12854 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R., Morshed, S., Latif, R., Zaidi, M. & Davies, T. F. The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 21, 897–906 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamoah, K. et al. High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol. Endocrinol. 22, 1141–1153 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Genetic confirmation for a central role for TNFalpha in the direct action of thyroid stimulating hormone on the skeleton. Proc. Natl Acad. Sci. USA 110, 9891–9896 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baliram, R. et al. Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc. Natl Acad. Sci. USA 108, 16277–16282 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampath, T. K. et al. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J. Bone Min. Res. 22, 849–859 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Mazziotti, G. et al. Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J. Bone Min. Res. 20, 480–486 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Karga, H. et al. The effects of recombinant human TSH on bone turnover in patients after thyroidectomy. J. Bone Min. Metab. 28, 35–41 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Martini, G. et al. The effects of recombinant TSH on bone turnover markers and serum osteoprotegerin and RANKL levels. Thyroid 18, 455–460 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, S. W. et al. The presence of thyroid-stimulation blocking antibody prevents high bone turnover in untreated premenopausal patients with Graves’ disease. PLoS ONE 10, e0144599 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Recklinghausen, F. in Festschrift für Rudolf Virchow (ed. Reimer, G.) (Druck und Verlag von Georg Reimer, 1891).

  • Blum, M. R. et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313, 2055–2065 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flynn, R. W. et al. Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J. Clin. Endocrinol. Metab. 95, 186–193 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. K. et al. The effects of thyrotropin-suppressing therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Bone 71, 101–105 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Vignera, S. et al. l-thyroxin treatment and post-menopausal osteoporosis: relevance of the risk profile present in clinical history. Minerva Ginecol. 60, 475–484 (2008).

    PubMed 

    Google Scholar
     

  • Svare, A. et al. Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT 2 study. Eur. J. Endocrinol. 161, 779–786 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, D. C., Ettinger, B., Nevitt, M. C. & Stone, K. L., Study of Osteoporotic Fractures Research Group. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134, 561–568 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. Y. et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 25, 300–307 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karimifar, M. et al. Effects of levothyroxine and thyroid stimulating hormone on bone loss in patients with primary hypothyroidism. J. Res. Pharm. Pract. 3, 83–87 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahamsen, B. et al. The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J. Bone Min. Res. 30, 898–905 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Abrahamsen, B. et al. Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures — the OPENTHYRO register cohort. J. Bone Min. Res. 29, 2040–2050 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Grimnes, G., Emaus, N., Joakimsen, R. M., Figenschau, Y. & Jorde, R. The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Tromso study. Thyroid 18, 1147–1155 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, M. S. The association between serum thyroid-stimulating hormone in its reference range and bone status in postmenopausal American women. Bone 40, 1128–1134 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. J. et al. Low normal TSH levels are associated with impaired BMD and hip geometry in the elderly. Aging Dis. 7, 734–743 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, B. et al. Low thyroid stimulating hormone levels are associated with low bone mineral density in femoral neck in elderly women. Arch. Med. Res. 47, 310–314 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Waring, A. C. et al. A prospective study of thyroid function, bone loss, and fractures in older men: the MrOS study. J. Bone Min. Res. 28, 472–479 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Acar, B. et al. Evaluation of thyroid function status among postmenopausal women with and without osteoporosis. Int. J. Gynaecol. Obstet. 134, 53–57 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noh, H. M., Park, Y. S., Lee, J. & Lee, W. A cross-sectional study to examine the correlation between serum TSH levels and the osteoporosis of the lumbar spine in healthy women with normal thyroid function. Osteoporos. Int. 26, 997–1003 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Deure, W. M. et al. Effects of serum TSH and FT4 levels and the TSHR-Asp727Glu polymorphism on bone: the Rotterdam study. Clin. Endocrinol. 68, 175–181 (2008).


    Google Scholar
     

  • Albagha, O. M. E., Natarajan, R., Reid, D. M. & Ralston, S. H. The D727E polymorphism of the human thyroid stimulating hormone receptor is associated with bone mineral density and bone loss in women from the UK. J. Bone Min. Res. 20, S341 (2005).


    Google Scholar
     

  • Liu, R. D. et al. The Glu727 allele of thyroid stimulating hormone receptor gene is associated with osteoporosis. N. Am. J. Med. Sci. 4, 300–304 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Vliet, N. A. et al. Thyroid stimulating hormone and bone mineral density: evidence from a two-sample Mendelian randomization study and a candidate gene association study. J. Bone Min. Res. 33, 1318–1325 (2018).

    Article 

    Google Scholar
     

  • Liu, S., Cheng, Y., Fan, M., Chen, D. & Bian, Z. FSH aggravates periodontitis-related bone loss in ovariectomized rats. J. Dent. Res. 89, 366–371 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S., Cheng, Y., Xu, W. & Bian, Z. Protective effects of follicle-stimulating hormone inhibitor on alveolar bone loss resulting from experimental periapical lesions in ovariectomized rats. J. Endod. 36, 658–663 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, L. J. et al. FSH-receptor isoforms and FSH-dependent gene transcription in human monocytes and osteoclasts. Biochem. Biophys. Res. Commun. 394, 12–17 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Further evidence for direct pro-resorptive actions of FSH. Biochem. Biophys. Res. Commun. 394, 6–11 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Bone microenvironment specific roles of ITAM adapter signaling during bone remodeling induced by acute estrogen-deficiency. PLoS ONE 2, e586 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Follicle-stimulating hormone increases the risk of postmenopausal osteoporosis by stimulating osteoclast differentiation. PLoS ONE 10, e0134986 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allan, C. M. et al. Follicle-stimulating hormone increases bone mass in female mice. Proc. Natl Acad. Sci. USA 107, 22629–22634 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritter, V. et al. Follicle-stimulating hormone does not impact male bone mass in vivo or human male osteoclasts in vitro. Calcif. Tissue Int. 82, 383–391 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, Y. et al. Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem. Sci. 8, 3703–3711 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Y. et al. Epitope-specific monoclonal antibodies to FSHbeta increase bone mass. Proc. Natl Acad. Sci. USA 115, 2192–2197 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meher, B. R., Dixit, A., Bousfield, G. R. & Lushington, G. H. Glycosylation effects on FSH–FSHR interaction dynamics: a case study of different FSH glycoforms by molecular dynamics simulations. PLoS ONE 10, e0137897 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannon, J. G., Kraj, B. & Sloan, G. Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine 53, 141–144 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal, J., Sun, L., Kumar, T. R., Blair, H. C. & Zaidi, M. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl Acad. Sci. USA 103, 14925–14930 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannon, J. G. et al. Follicle-stimulating hormone, interleukin-1, and bone density in adult women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R790–R798 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gertz, E. R. et al. Contribution of serum inflammatory markers to changes in bone mineral content and density in postmenopausal women: a 1-year investigation. J. Clin. Densitom. 13, 277–282 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L. L. et al. Blocking antibody to the beta-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl Acad. Sci. USA 109, 14574–14579 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J. et al. Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone. Endocrinology 148, 2613–2621 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danilovich, N. et al. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology 141, 4295–4308 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abel, M. H., Huhtaniemi, I., Pakarinen, P., Kumar, T. R. & Charlton, H. M. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction 125, 165–173 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oz, O. K. et al. Bone has a sexually dimorphic response to aromatase deficiency. J. Bone Min. Res. 15, 507–514 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Couse, J. F., Yates, M. M., Walker, V. R. & Korach, K. S. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol. Endocrinol. 17, 1039–1053 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sims, N. A. et al. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30, 18–25 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalid, A. B. & Krum, S. A. Estrogen receptors alpha and beta in bone. Bone 87, 130–135 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devleta, B., Adem, B. & Senada, S. Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J. Bone Min. Metab. 22, 360–364 (2004).

    Article 

    Google Scholar
     

  • Kawai, H., Furuhashi, M. & Suganuma, N. Serum follicle-stimulating hormone level is a predictor of bone mineral density in patients with hormone replacement therapy. Arch. Gynecol. Obstet. 269, 192–195 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Podfigurna-Stopa, A. et al. Skeletal status and body composition in young women with functional hypothalamic amenorrhea. Gynecol. Endocrinol. 28, 299–304 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drake, M. T., McCready, L. K., Hoey, K. A., Atkinson, E. J. & Khosla, S. Effects of suppression of follicle-stimulating hormone secretion on bone resorption markers in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 5063–5068 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rendina, D. et al. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur. J. Endocrinol. 163, 165–172 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendoza, N. et al. Estrogen-related genes and postmenopausal osteoporosis risk. Climacteric 15, 587–593 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randolph, J. F. Jr. et al. Reproductive hormones in the early menopausal transition: relationship to ethnicity, body size, and menopausal status. J. Clin. Endocrinol. Metab. 88, 1516–1522 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sowers, M. R. et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos. Int. 14, 191–197 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sowers, M. R. et al. Hormone predictors of bone mineral density changes during the menopausal transition. J. Clin. Endocrinol. Metab. 91, 1261–1267 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greendale, G. A. et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J. Bone Min. Res. 27, 111–118 (2012).

    Article 

    Google Scholar
     

  • Sowers, M. et al. Performance-based physical functioning in African-American and Caucasian women at midlife: considering body composition, quadriceps strength, and knee osteoarthritis. Am. J. Epidemiol. 163, 950–958 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Greendale, G. A. et al. Changes in body composition and weight during the menopause transition. JCI Insight 4, e124865 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greendale, G. A. et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology 72, 1850–1857 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukefahr, A. L. et al. Decreased bone mineral density in rats rendered follicle-deplete by an ovotoxic chemical correlates with changes in follicle-stimulating hormone and inhibin A. Calcif. Tissue Int. 90, 239–249 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. R. et al. Relationship of age-related concentrations of serum FSH and LH with bone mineral density, prevalence of osteoporosis in native Chinese women. Clin. Chim. Acta 400, 8–13 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. Y. et al. Age-related changes in biochemical markers of bone turnover and gonadotropin levels and their relationship among Chinese adult women. Osteoporos. Int. 21, 275–285 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, E. et al. Bone loss during menopausal transition among southern Chinese women. Maturitas 69, 50–56 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. Correlation analysis for follicle-stimulating hormone and C-terminal cross-linked telopetides of type I collagen in menopausal transition women with osteoporosis. Int. J. Clin. Exp. Med. 8, 2417–2422 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher, C. M., Moonga, B. S. & Kovach, J. S. Cadmium, follicle-stimulating hormone, and effects on bone in women age 42–60 years, NHANES III. Environ. Res. 110, 105–111 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adami, S. et al. Determinants of bone turnover markers in healthy premenopausal women. Calcif. Tissue Int. 82, 341–347 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veldhuis-Vlug, A. G. et al. Serum FSH is associated with BMD, bone marrow adiposity, and body composition in the AGES-Reykjavik Study of older adults. J. Clin. Endocrinol. Metab. 106, e1156–e1169 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Crandall, C. J. et al. Serum sex steroid levels and longitudinal changes in bone density in relation to the final menstrual period. J. Clin. Endocrinol. Metab. 98, E654–E663 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofbauer, L. C. & Rauner, M. Minireview: live and let die: molecular effects of glucocorticoids on bone cells. Mol. Endocrinol. 23, 1525–1531 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Compston, J. Glucocorticoid-induced osteoporosis: an update. Endocrine 61, 7–16 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minetto, M. et al. Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome. Osteoporos. Int. 15, 855–861 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, Q. et al. Multiple melanocortin receptors are expressed in bone cells. Bone 36, 820–831 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isales, C. M., Zaidi, M. & Blair, H. C. ACTH is a novel regulator of bone mass. Ann. N. Y. Acad. Sci. 1192, 110–116 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, T. et al. Bone phenotype in melanocortin 2 receptor-deficient mice. Bone Rep. 13, 100713 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaidi, M. et al. ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proc. Natl Acad. Sci. USA 107, 8782–8787 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tourkova, I. L. et al. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D(3) enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. Lab. Invest. 97, 1072–1083 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghi, F., Vahednia, E., Naderi Meshkin, H. & Kerachian, M. A. The effect of adrenocorticotropic hormone on alpha-2-macroglobulin in osteoblasts derived from human mesenchymal stem cells. J. Cell. Mol. Med. 24, 4784–4790 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elabd, C. et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cell 26, 2399–2407 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Tamma, R. et al. Oxytocin is an anabolic bone hormone. Proc. Natl Acad. Sci. USA 106, 7149–7154 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Functions of vasopressin and oxytocin in bone mass regulation. Proc. Natl Acad. Sci. USA 113, 164–169 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamma, R. et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl Acad. Sci. USA 110, 18644–18649 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athonvarangkul, D. & Wysolmerski, J. J. Crosstalk within a brain–breast–bone axis regulates mineral and skeletal metabolism during lactation. Front. Physiol. 14, 1121579 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Benedetto, A. et al. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. Proc. Natl Acad. Sci. USA 111, 16502–16507 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Oxytocin regulates body composition. Proc. Natl Acad. Sci. USA 116, 26808–26815 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Oxytocin deficiency impairs maternal skeletal remodeling. Biochem. Biophys. Res. Commun. 388, 161–166 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, W. J. et al. Association between serum oxytocin, bone mineral density and body composition in Chinese adult females. Medicina 58, 1625 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breuil, V. et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: analysis of the OPUS cohort. J. Clin. Endocrinol. Metab. 99, E634–E641 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breuil, V. et al. Oxytocin and bone status in men: analysis of the MINOS cohort. Osteoporos. Int. 26, 2877–2882 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sejling, A. S., Pedersen-Bjergaard, U. & Eiken, P. Syndrome of inappropriate ADH secretion and severe osteoporosis. J. Clin. Endocrinol. Metab. 97, 4306–4310 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sejling, A. S., Thorsteinsson, A. L., Pedersen-Bjergaard, U. & Eiken, P. Recovery from SIADH-associated osteoporosis: a case report. J. Clin. Endocrinol. Metab. 99, 3527–3530 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murthy, K. et al. The effects of hyponatremia on bone density and fractures: a systematic review and meta-analysis. Endocr. Pract. 25, 366–378 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Upala, S. & Sanguankeo, A. Association between hyponatremia, osteoporosis, and fracture: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 101, 1880–1886 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinsella, S., Moran, S., Sullivan, M. O., Molloy, M. G. & Eustace, J. A. Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin. J. Am. Soc. Nephrol. 5, 275–280 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coss, D. et al. Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am. J. Physiol. Endocrinol. Metab. 279, E1216–E1225 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seriwatanachai, D. et al. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 42, 535–546 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clement-Lacroix, P. et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 140, 96–105 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sowers, M. et al. Changes in body composition in women over six years at midlife: ovarian and chronological aging. J. Clin. Endocrinol. Metab. 92, 895–901 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. M. et al. FSH regulates fat accumulation and redistribution in aging through the Galphai/Ca(2+)/CREB pathway. Aging Cell 14, 409–420 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. et al. FSH promotes fat accumulation by activating PPARgamma signaling in surgically castrated, but not immunocastrated, male pigs. Theriogenology 160, 10–17 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, X. et al. A novel follicle-stimulating hormone vaccine for controlling fat accumulation. Theriogenology 148, 103–111 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abildgaard, J. et al. Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Sci. Rep. 11, 14750 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araujo, A. B. & Wittert, G. A. Endocrinology of the aging male. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 303–319 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostergren, P. B. et al. Metabolic consequences of gonadotropin-releasing hormone agonists vs orchiectomy: a randomized clinical study. BJU Int. 123, 602–611 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundback, V., Kulyte, A., Dahlman, I. & Marcus, C. Adipose-specific inactivation of thyroid stimulating hormone receptors in mice modifies body weight, temperature and gene expression in adipocytes. Physiol. Rep. 8, e14538 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Draman, M. S. et al. The role of thyrotropin receptor activation in adipogenesis and modulation of fat phenotype. Front. Endocrinol. 8, 83 (2017).

    Article 

    Google Scholar
     

  • Lu, M. & Lin, R. Y. TSH stimulates adipogenesis in mouse embryonic stem cells. J. Endocrinol. 196, 159–169 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo, T. & Kobayashi, T. Expression of functional TSH receptor in white adipose tissues of hyt/hyt mice induces lipolysis in vivo. Am. J. Physiol. Endocrinol. Metab. 302, E1569–E1575 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S., Coenen, M. J., Scherer, P. E. & Bahn, R. S. Evidence for enhanced adipogenesis in the orbits of patients with Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 89, 930–935 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraguchi, K., Shimura, H., Lin, L., Endo, T. & Onaya, T. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology 137, 3200–3205 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, S. et al. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis. 11, 17 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haraguchi, K. et al. Effects of thyrotropin on the proliferation and differentiation of cultured rat preadipocytes. Thyroid 9, 613–619 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haluzik, M. et al. Effects of hypo- and hyperthyroidism on noradrenergic activity and glycerol concentrations in human subcutaneous abdominal adipose tissue assessed with microdialysis. J. Clin. Endocrinol. Metab. 88, 5605–5608 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fox, C. S. et al. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch. Intern. Med. 168, 587–592 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ittermann, T. et al. Low serum TSH levels are associated with low values of fat-free mass and body cell mass in the elderly. Sci. Rep. 11, 10547 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvorakova, M. et al. Relationship between pituitary–thyroid axis hormones and anthropometric parameters in Czech adult population. Physiol. Res. 57, S127–S134 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nyrnes, A., Jorde, R. & Sundsfjord, J. Serum TSH is positively associated with BMI. Int. J. Obes. 30, 100–105 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ruhla, S. et al. A high normal TSH is associated with the metabolic syndrome. Clin. Endocrinol. 72, 696–701 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sakurai, M. et al. Association between a serum thyroid-stimulating hormone concentration within the normal range and indices of obesity in Japanese men and women. Intern. Med. 53, 669–674 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. TSH promotes adiposity by inhibiting the browning of white fat. Adipocyte 9, 264–278 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, D. et al. Thyroid-stimulating hormone inhibits adipose triglyceride lipase in 3T3-L1 adipocytes through the PKA pathway. PLoS ONE 10, e0116439 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janson, A. et al. Effects of stimulatory and inhibitory thyrotropin receptor antibodies on lipolysis in infant adipocytes. J. Clin. Endocrinol. Metab. 80, 1712–1716 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Endo, T. & Kobayashi, T. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. Am. J. Physiol. Endocrinol. Metab. 295, E514–E518 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Biological effects of thyrotropin receptor activation on human orbital preadipocytes. Invest. Ophthalmol. Vis. Sci. 47, 5197–5203 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Comas, F. et al. Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function. Int. J. Obes. 43, 1611–1619 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Elgadi, A., Zemack, H., Marcus, C. & Norgren, S. Tissue-specific knockout of TSHr in white adipose tissue increases adipocyte size and decreases TSH-induced lipolysis. Biochem. Biophys. Res. Commun. 393, 526–530 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Navarrete, J. M. et al. TSHB mRNA is linked to cholesterol metabolism in adipose tissue. FASEB J. 31, 4482–4491 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blevins, J. E., Schwartz, M. W. & Baskin, D. G. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R87–R96 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Son, S. et al. Whole-brain wiring diagram of oxytocin system in adult mice. J. Neurosci. 42, 5021–5033 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maejima, Y. et al. Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett. 588, 4404–4412 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olson, B. R. et al. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12, 113–118 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arletti, R., Benelli, A. & Bertolini, A. Oxytocin inhibits food and fluid intake in rats. Physiol. Behav. 48, 825–830 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, A. S., Korgan, A. C. & Young, W. S. Oxytocin delivered nasally or intraperitoneally reaches the brain and plasma of normal and oxytocin knockout mice. Pharmacol. Res. 146, 104324 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maejima, Y. et al. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging 3, 1169–1177 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klockars, A., Brunton, C., Li, L., Levine, A. S. & Olszewski, P. K. Intravenous administration of oxytocin in rats acutely decreases deprivation-induced chow intake, but it fails to affect consumption of palatable solutions. Peptides 93, 13–19 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wronski, M. L. et al. A randomized, double-blind, placebo-controlled clinical trial of 8-week intranasal oxytocin administration in adults with obesity: rationale, study design, and methods. Contemp. Clin. Trials 122, 106909 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Z. et al. An obligate role of oxytocin neurons in diet induced energy expenditure. PLoS ONE 7, e45167 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deblon, N. et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS ONE 6, e25565 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, K. J. et al. The regulation of oxytocin receptor gene expression during adipogenesis. J. Neuroendocrinol. 27, 335–342 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blevins, J. E. et al. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R431–R438 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, J., Zhang, R., Wu, R., Gu, Y. & Lu, Y. The effects of oxytocin to rectify metabolic dysfunction in obese mice are associated with increased thermogenesis. Mol. Cell Endocrinol. 514, 110903 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noble, E. E., Billington, C. J., Kotz, C. M. & Wang, C. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R737–R745 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasahara, Y. et al. Oxytocin receptor in the hypothalamus is sufficient to rescue normal thermoregulatory function in male oxytocin receptor knockout mice. Endocrinology 154, 4305–4315 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi, D. et al. Ablation of oxytocin neurons causes a deficit in cold stress response. J. Endocr. Soc. 1, 1041–1055 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, W. et al. Decreased circulating levels of oxytocin in obesity and newly diagnosed type 2 diabetic patients. J. Clin. Endocrinol. Metab. 99, 4683–4689 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Froemke, R. C. & Young, L. J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 44, 359–381 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, F. L., Weisman, O., Feldman, R., Hurley, R. A. & Taber, K. H. Oxytocin and behavior: evidence for effects in the brain. J. Neuropsychiatry Clin. Neurosci. 25, 96–102 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gainer, H. Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J. Neuroendocrinol. 24, 528–538 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eliava, M. et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89, 1291–1304 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishunina, T. A. & Swaab, D. F. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus: size changes in relation to age and sex. J. Clin. Endocrinol. Metab. 84, 4637–4644 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshikawa, T. et al. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus. Eur. J. Neurosci. 42, 2678–2689 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jenkins, J. S., Ang, V. T., Hawthorn, J., Rossor, M. N. & Iversen, L. L. Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Res. 291, 111–117 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mens, W. B., Witter, A. & Van Wimersma Greidanus, T. B. Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res. 262, 143–149 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pow, D. V. & Morris, J. F. Dendrites of hypothalamic magnocellular neurons release neurohypophyseal peptides by exocytosis. Neuroscience 32, 435–439 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirasawa, M. et al. Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. J. Physiol. 559, 611–624 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brussaard, A. B., Kits, K. S. & de Vlieger, T. A. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J. Physiol. 497, 495–507 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, C. S. Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 65, 17–39 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Carter, C. S. et al. Is oxytocin ‘Nature’s Medicine’? Pharmacol. Rev. 72, 829–861 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cochran, D. M., Fallon, D., Hill, M. & Frazier, J. A. The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv. Rev. Psychiatry 21, 219–247 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, V. et al. Brain atlas for glycoprotein hormone receptors at single-transcript level. eLife 11, e79612 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sáenz de Miera, C., Sage-Ciocca, D., Simonneaux, V., Pévet, P. & Monecke, S. Melatonin-independent photoperiodic entrainment of the circannual TSH rhythm in the pars tuberalis of the European Hamster. J. Biol. Rhythm. 33, 302–317 (2018).

    Article 

    Google Scholar
     

  • Hanon, E. A. et al. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr. Biol. 18, 1147–1152 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrett, P. & Bolborea, M. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J. Pineal Res. 52, 376–388 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikegami, K. et al. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 9, 801–810 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, R. et al. Association of subclinical hypothyroidism with anxiety symptom in young first-episode and drug-naive patients with major depressive disorder. Front. Psychiatry 13, 920723 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dayan, C. M. & Panicker, V. Hypothyroidism and depression. Eur. Thyroid J. 2, 168–179 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luan, S. et al. Thyrotropin receptor signaling deficiency impairs spatial learning and memory in mice. J. Endocrinol. 246, 41–55 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgos, J. R., Iresjo, B. M., Warnaker, S. & Smedh, U. Presence of TSH receptors in discrete areas of the hypothalamus and caudal brainstem with relevance for feeding controls — support for functional significance. Brain Res. 1642, 278–286 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bi, W. K. et al. FSH signaling is involved in affective disorders. Biochem. Biophys. Res. Commun. 525, 915–920 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blair, J. A., Bhatta, S. & Casadesus, G. CNS luteinizing hormone receptor activation rescues ovariectomy-related loss of spatial memory and neuronal plasticity. Neurobiol. Aging 78, 111–120 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gale, S. D., Baxter, L. & Thompson, J. Greater memory impairment in dementing females than males relative to sex-matched healthy controls. J. Clin. Exp. Neuropsychol. 38, 527–533 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chêne, G. et al. Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimers Dement. 11, 310–320 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, K. A. et al. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimers Dement. 1, 103–110 (2015).

    Article 

    Google Scholar
     

  • Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espeland, M. A. et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2959–2968 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zandi, P. P. et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288, 2123–2129 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greendale, G. A. et al. Menopause-associated symptoms and cognitive performance: results from the study of women’s health across the nation. Am. J. Epidemiol. 171, 1214–1224 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowen, R. L., Isley, J. P. & Atkinson, R. L. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J. Neuroendocrinol. 12, 351–354 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Short, R. A., Bowen, R. L., O’Brien, P. C. & Graff-Radford, N. R. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin. Proc. 76, 906–909 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corbo, R. M., Gambina, G., Broggio, E. & Scacchi, R. Influence of variation in the follicle-stimulating hormone receptor gene (FSHR) and age at menopause on the development of Alzheimer’s disease in women. Dement. Geriatr. Cogn. Disord. 32, 63–69 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espinoza, S. E. et al. Intranasal oxytocin improves lean muscle mass and lowers LDL cholesterol in older adults with sarcopenic obesity: a pilot randomized controlled trial. J. Am. Med. Dir. Assoc. 22, 1877–1882 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L. L. et al. Blocking FSH action attenuates osteoclastogenesis. Biochem. Biophys. Res. Commun. 422, 54–58 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojekar, S. et al. Development and biophysical characterization of a humanized FSH-blocking monoclonal antibody therapeutic formulated at an ultra-high concentration. eLife 12, e88898 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sant, D., Rokekar, S. & Gera, S. Optimizing therapeutic humanized FSH-blocking antibody formulation using protein thermal shift assay. Ann. N. Y. Acad. Sci. 1521, 67–78 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng, W. et al. Immunization with FSHbeta fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model. Biochem. Biophys. Res. Commun. 434, 280–286 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: