Monday, October 2, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Plasma miR-195-5p predicts the severity of Covid-19 in hospitalized patients – Scientific Reports


  • Bartel, D. P. Metazoan microRNAs. Cell 173(1), 20–51 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uhlmann, S. et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol. Syst. Biol. 8, 570 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, R. C. et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19(1), 92–105 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girardi, E., López, P. & Pfeffer, S. On the importance of host MicroRNAs during viral infection. Front. Genet. 9, 439 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siniscalchi, C. et al. Human MicroRNAs interacting with SARS-CoV-2 RNA sequences: Computational analysis and experimental target validation. Front. Genet. 12, 678994 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akula, S. M., Bolin, P. & Cook, P. P. Cellular miR-150-5p may have a crucial role to play in the biology of SARS-CoV-2 infection by regulating nsp10 gene. RNA Biol. 19(1), 1–11 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trobaugh, D. W. & Klimstra, W. B. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med. 23(1), 80–93 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leon-Icaza, S. A., Zeng, M. & Rosas-Taraco, A. G. microRNAs in viral acute respiratory infections: Immune regulation, biomarkers, therapy, and vaccines. ExRNA 1(1), 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, L. et al. The SARS-CoV-2 protein NSP2 impairs the silencing capacity of the human 4EHP-GIGYF2 complex. iScience 25(7), 104646 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trobaugh, D. W. et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 506(7487), 245–248 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. SARS-COV-2 as potential microRNA sponge in COVID-19 patients. BMC Med. Genom. 15(2), 94 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bartoszewski, R. et al. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am. J. Physiol. Lung Cell. Mol. Physiol. 319(3), L444-l455 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, Y. et al. Epstein-Barr virus circRNAome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered 10(1), 593–603 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cazalla, D. & Steitz, J. A. Down-regulation of a host microRNA by a viral noncoding RNA. Cold Spring Harb. Symp. Quant. Biol. 75, 321–324 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luna, J. M. et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160(6), 1099–1110 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 105(30), 10513–10518 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlica, P. et al. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proc. Natl. Acad. Sci. USA 118(52), e2116668118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, M. et al. A virus-derived microRNA targets immune response genes during SARS-CoV-2 infection. EMBO Rep. 23(2), e54341 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morales, L. et al. SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe 21(3), 344–355 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tribolet, L. et al. MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Front. Microbiol. 11, 1197 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Z. et al. A virus-derived microRNA-like small RNA serves as a serum biomarker to prioritize the COVID-19 patients at high risk of developing severe disease. Cell Discov. 7(1), 48 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grehl, C. et al. Detection of SARS-CoV-2 derived small RNAs and changes in circulating small RNAs associated with COVID-19. Viruses 13(8), 1593 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, F. et al. Viral MicroRNAs encoded by nucleocapsid gene of SARS-CoV-2 are detected during infection, and targeting metabolic pathways in host cells. Cells 10(7), 1762 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farr, R. J. et al. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 17(7), e1009759 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, J. T. et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 37(3), 109839 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J. Clin. Lab. Anal. 34(10), e23590 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg, A. et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur. J. Heart Fail. 23(3), 468–475 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clin. Transl. Med. 10(6), e200 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saulle, I. et al. MiRNA profiling in plasma and placenta of SARS-CoV-2-infected pregnant women. Cells 10(7), 1788 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Decreased inhibition of exosomal miRNAs on SARS-CoV-2 replication underlies poor outcomes in elderly people and diabetic patients. Signal Transduct. Target Ther. 6(1), 300 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. H. et al. Potential therapeutic effect of micrornas in extracellular vesicles from mesenchymal stem cells against SARS-CoV-2. Cells 10(9), 2393 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabbatinelli, J. et al. Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech. Ageing Dev. 193, 111413 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Centa, A. et al. Deregulated miRNA expression is associated with endothelial dysfunction in post-mortem lung biopsies of COVID-19 patients. Am. J. Physiol. Lung Cell Mol. Physiol. 320(3), L405–L412 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fayyad-Kazan, M. et al. Circulating miRNAs: Potential diagnostic role for coronavirus disease 2019 (COVID-19). Infect. Genet. Evol. 94, 105020 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagheri-Hosseinabadi, Z. et al. The relationship between serum levels of interleukin-2 and IL-8 with circulating microRNA-10b in patients with COVID-19. Iran. J. Immunol. 18(1), 65–73 (2021).

    PubMed 

    Google Scholar
     

  • Li, C. X. et al. Whole-transcriptome RNA sequencing reveals significant differentially expressed mRNAs, miRNAs, and lncRNAs and related regulating biological pathways in the peripheral blood of COVID-19 patients. Mediators Inflamm. 2021, 6635925 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keikha, R., Hashemi-Shahri, S. M. & Jebali, A. The relative expression of miR-31, miR-29, miR-126, and miR-17 and their mRNA targets in the serum of COVID-19 patients with different grades during hospitalization. Eur. J. Med. Res. 26(1), 75 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pimenta, R. et al. MiR-200c-3p expression may be associated with worsening of the clinical course of patients with COVID-19. Mol. Biol. Res. Commun. 10(3), 141–147 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donyavi, T. et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a–3p, 155–5p, and let-7b-3p in PBMC. Int. Immunopharmacol. 97, 107641 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kassif-Lerner, R. et al. miR-155: A potential biomarker for predicting mortality in COVID-19 patients. J. Pers. Med. 12(2), 324 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27(6), 2240–2252 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandi, N. et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 69(13), 5553–5559 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devadas, K. et al. Identification of host micro RNAs that differentiate HIV-1 and HIV-2 infection using genome expression profiling techniques. Viruses 8(5), 121 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, S. et al. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. EBioMedicine 43, 307–316 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, X. et al. MicroRNA-195 suppresses enterovirus A71-induced pyroptosis in human neuroblastoma cells through targeting NLRX1. Virus Res. 292, 198245 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chow, J. T. & Salmena, L. Prediction and analysis of SARS-CoV-2-targeting MicroRNA in human lung epithelium. Genes (Basel) 11(9), 1002 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181(5), 1036-1045.e9 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kgatle, M. M. et al. COVID-19 is a multi-organ aggressor: Epigenetic and clinical marks. Front. Immunol. 12, 752380 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. & Schulze, P. C. MicroRNAs in heart failure: Non-coding regulators of metabolic function. Biochim. Biophys. Acta 1862(12), 2276–2287 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, G. et al. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE 7(12), e50926 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, D. et al. Inhibition of MicroRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J. Infect. Dis. 213(10), 1661–1670 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, H. Y. et al. miR-195 has a potential to treat ischemic and hemorrhagic stroke through neurovascular protection and neurogenesis. Mol. Ther. Methods Clin. Dev. 13, 121–132 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. miR-195-5p alleviates acute kidney injury through repression of inflammation and oxidative stress by targeting vascular endothelial growth factor A. Aging (Albany NY) 12(11), 10235–10245 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, J.-Z., Wang, S.-J. & Xia, C. microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. J. Thromb. Thrombolysis 46(3), 275–282 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gasparello, J., Finotti, A. & Gambari, R. Tackling the COVID-19 “cytokine storm” with microRNA mimics directly targeting the 3’UTR of pro-inflammatory mRNAs. Med. Hypotheses 146, 110415 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell. Rep. Med. 3(2), 100522 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berlin, D. A., Gulick, R. M. & Martinez, F. J. Severe Covid-19. N. Engl. J. Med. 383(25), 2451–2460 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Bruin, S. et al. Clinical features and prognostic factors in Covid-19: A prospective cohort study. EBioMedicine 67, 103378 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, A. P. et al. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 84, 106504 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yekelchyk, M. et al. Flower lose, a cell fitness marker, predicts COVID-19 prognosis. EMBO Mol. Med. 13(11), e13714 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Gonzalo-Calvo, D. et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl. Res. 236, 147–159 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutmann, C. et al. Association of cardiometabolic microRNAs with COVID-19 severity and mortality. Cardiovasc. Res. 118(2), 461–474 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parray, A. et al. SnoRNAs and miRNAs networks underlying COVID-19 disease severity. Vaccines (Basel) 9(10), 1056 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giuliani, A. et al. Circulating miR-320b and miR-483-5p levels are associated with COVID-19 in-hospital mortality. Mech. Ageing Dev. 202, 111636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Pato, A. et al. Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerg. Microbes Infect. 11(1), 676–688 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gustafson, D. et al. Cardiovascular signatures of COVID-19 predict mortality and identify barrier stabilizing therapies. EBioMedicine 78, 103982 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiersinga, W. J. et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA 324(8), 782–793 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogan, C. A. et al. High frequency of SARS-CoV-2 RNAemia and association with severe disease. Clin. Infect. Dis. 72(9), e291–e295 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, K. et al. Quantitative assessment of SARS-CoV-2 RNAemia and outcome in patients with coronavirus disease 2019. J. Med. Virol. 93(5), 3165–3175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ram-Mohan, N. et al. SARS-CoV-2 RNAemia predicts clinical deterioration and extrapulmonary complications from COVID-19. Clin. Infect. Dis. 74(2), 218–226 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019. Clin. Infect. Dis. 71(8), 1937–1942 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olea, B. et al. Lower respiratory tract and plasma SARS-CoV-2 RNA load in critically ill adult COVID-19 patients: Relationship with biomarkers of disease severity. J. Infect. 83(3), 381–412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutmann, C. et al. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat. Commun. 12(1), 3406 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa, R. et al. Combined kinetic analysis of SARS-CoV-2 RNAemia, N-antigenemia and virus-specific antibodies in critically ill adult COVID-19 patients. Sci. Rep. 12(1), 8273 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. Relationship between serum severe acute respiratory syndrome coronavirus 2 nucleic acid and organ damage in coronavirus 2019 patients: A cohort study. Clin. Infect. Dis. 73(1), 68–75 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nersisyan, S. et al. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ 8, e9994 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. R. et al. Expression analyses of MicroRNAs in hamster lung tissues infected by SARS-CoV-2. Mol. Cells 43(11), 953–963 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepe, G. et al. Evaluation of potential miRNA sponge effects of SARS genomes in human. Noncoding RNA Res. 7(1), 48–53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. microRNA arm-imbalance in part from complementary targets mediated decay promotes gastric cancer progression. Nat. Commun. 10(1), 4397 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. The miRNA: A small but powerful RNA for COVID-19. Brief Bioinform. 22(2), 1137–1149 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, A. S. V. et al. Clinical burden, risk factor impact and outcomes following myocardial infarction and stroke: A 25-year individual patient level linkage study. Lancet Reg. Health Eur. 7, 100141 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebert, M. et al. PIWI proteins contribute to apoptosis during the UPR in human airway epithelial cells. Sci. Rep. 8(1), 16431 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fung, T. S. & Liu, D. X. Coronavirus infection, ER stress, apoptosis and innate immunity. Front. Microbiol. 5, 296 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garnier, N. et al. Altered microRNA expression in severe COVID-19: Potential prognostic and pathophysiological role. Clin. Transl. Med. 12(6), e899 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J., Chen, T. & Zhou, Y. Mediators of SARS-CoV-2 entry are preferentially enriched in cardiomyocytes. Hereditas 158(1), 4 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, K. K. et al. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell. Physiol. 319(2), C258-c267 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elesela, S. & Lukacs, N. W. Role of mitochondria in viral infections. Life (Basel) 11(3), 232 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shang, C. et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front. Microbiol. 12, 780768 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ramachandran, K. et al. SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics. iScience 25(1), 103722 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purohit, P. K. et al. MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol. 16(7), 918–929 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, R. et al. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci. Rep. 5(1), 17454 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R. et al. MiR-195 dependent roles of mitofusin2 in the mitochondrial dysfunction of hippocampal neurons in SAMP8 mice. Brain Res. 1652, 135–143 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishi, H. et al. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J. Biol. Chem. 285(7), 4920–4930 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saleh, J. et al. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54, 1–7 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, A. Novel coronavirus-induced NLRP3 inflammasome activation: A potential drug target in the treatment of COVID-19. Front. Immunol. 11, 1021 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burtscher, J., Millet, G. P. & Burtscher, M. Low cardiorespiratory and mitochondrial fitness as risk factors in viral infections: Implications for COVID-19. Br. J. Sports Med. 55(8), 413–415 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, H. et al. MiR-195-5p represses inflammation, apoptosis, oxidative stress, and endoplasmic reticulum stress in sepsis-induced myocardial injury by targeting activating transcription factor 6. Cell. Biol. Int. 46(2), 243–254 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomas, C. et al. Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS ONE 12(10), e0186802 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, C. W. et al. Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics 11(6), 1626–1639 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sweetman, E. et al. A SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. J. Transl. Med. 18(1), 365 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, E. et al. Decreased fatty acid oxidation and altered lactate production during exercise in patients with post-acute COVID-19 syndrome. Am. J. Respir. Crit. Care Med. 205(1), 126–129 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, I. et al. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest 161(1), 54–63 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, Y. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185(5), 881-895.e20 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Bermejo, J. A. et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci. Transl. Med. 13(590), eabf7872 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sticht, C. et al. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE 13(10), e0206239 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607-d613 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: