Maccani, M. A. & Marsit, C. J. Epigenetics in the placenta. Am. J. Reprod. Immunol. 62, 78–89. https://doi.org/10.1111/j.1600-0897.2009.00716.x (2009).
Choumenkovitch, S. F. et al. Folic acid intake from fortification in United States exceeds predictions. J. Nutr. 132, 2792–2798. https://doi.org/10.1093/jn/132.9.2792%JTheJournalofNutrition (2002).
Schjenken, J. E. et al. Endocrine disruptor compounds-a cause of impaired immune tolerance driving inflammatory disorders of pregnancy?. Front. Endocrinol. (Lausanne) 12, 607539. https://doi.org/10.3389/fendo.2021.607539 (2021).
Suen, J. L. et al. Environmental factor-mediated transgenerational inheritance of Igf2r hypomethylation and pulmonary allergic response via targeting dendritic cells. Front. Immunol. 11, 603831. https://doi.org/10.3389/fimmu.2020.603831 (2020).
Latini, G., Verrotti, A. & De Felice, C. DI-2-ethylhexyl phthalate and endocrine disruption: A review. Curr. Drug Targets Immune Endocr. Metabol. Disord. 4, 37–40. https://doi.org/10.2174/1568008043340017 (2004).
Wang, I. J., Karmaus, W. J., Chen, S. L., Holloway, J. W. & Ewart, S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin. Epigenetics 7, 27. https://doi.org/10.1186/s13148-015-0060-x (2015).
Tekola-Ayele, F. et al. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin. Epigenetics 12, 78. https://doi.org/10.1186/s13148-020-00873-x (2020).
Nugent, B. M. & Bale, T. L. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front. Neuroendocrinol. 39, 28–37. https://doi.org/10.1016/j.yfrne.2015.09.001 (2015).
Chang, R. C. et al. DNA methylation-independent growth restriction and altered developmental programming in a mouse model of preconception male alcohol exposure. Epigenetics 12, 841–853. https://doi.org/10.1080/15592294.2017.1363952 (2017).
Liu, J. et al. Placental DNA methylation abnormalities in prenatal conotruncal heart defects. Front. Genet. 13, 878063. https://doi.org/10.3389/fgene.2022.878063 (2022).
Zhou, Q., Xiong, Y., Qu, B., Bao, A. & Zhang, Y. DNA methylation and recurrent pregnancy loss: A mysterious compass?. Front. Immunol. 12, 738962. https://doi.org/10.3389/fimmu.2021.738962 (2021).
Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B. & Radhakrishna, U. Placental DNA methylation changes and the early prediction of autism in full-term newborns. PLoS ONE 16, e0253340. https://doi.org/10.1371/journal.pone.0253340 (2021).
Strakovsky, R. S. & Schantz, S. L. Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. Environ Epigenet 4, dvy022. https://doi.org/10.1093/eep/dvy022 (2018).
Ravaei, A., Emanuele, M., Nazzaro, G., Fadiga, L. & Rubini, M. Placental DNA methylation profile as predicting marker for autism spectrum disorder (ASD). Mol. Med. 29, 8. https://doi.org/10.1186/s10020-022-00593-3 (2023).
Xia, B. et al. In utero and lactational exposure of DEHP increases the susceptibility of prostate carcinogenesis in male offspring through PSCA hypomethylation. Toxicol. Lett. 292, 78–84. https://doi.org/10.1016/j.toxlet.2018.04.022 (2018).
Nadeem, A. et al. Exposure to the plasticizer, Di-(2-ethylhexyl) phthalate during juvenile period exacerbates autism-like behavior in adult BTBR T + tf/J mice due to DNA hypomethylation and enhanced inflammation in brain and systemic immune cells. Prog. Neuropsychopharmacol. Biol. Psychiatry 109, 110249. https://doi.org/10.1016/j.pnpbp.2021.110249 (2021).
Üstündağ, Ü. V. & Emekli-Alturfan, E. Wnt pathway: A mechanism worth considering in endocrine disrupting chemical action. Toxicol. Ind. Health 36, 41–53. https://doi.org/10.1177/0748233719898989 (2020).
Zhang, L. F. et al. Differential expression of the Wnt/β-catenin pathway in the genital tubercle (GT) of fetal male rat following maternal exposure to di-n-butyl phthalate (DBP). Syst. Biol. Reprod. Med. 57, 244–250. https://doi.org/10.3109/19396368.2011.577509 (2011).
Agin, A. et al. Environmental exposure to phthalates and dementia with Lewy bodies: Contribution of metabolomics. J. Neurol. Neurosurg. Psychiatry 91, 968–974. https://doi.org/10.1136/jnnp-2020-322815 (2020).
Yen, P. L., How, C. M. & Hsiu-Chuan Liao, V. Early-life and chronic exposure to di(2-ethylhexyl) phthalate enhances amyloid-β toxicity associated with an autophagy-related gene in Caenorhabditis elegans Alzheimer’s disease models. Chemosphere 273, 128594. https://doi.org/10.1016/j.chemosphere.2020.128594 (2021).
Mathew, L. et al. The associations between prenatal phthalate exposure measured in child meconium and cognitive functioning of 12-month-old children in two cohorts at elevated risk for adverse neurodevelopment. Environ. Res. 214, 113928. https://doi.org/10.1016/j.envres.2022.113928 (2022).
Kim, J. I. et al. Association of phthalate exposure with autistic traits in children. Environ. Int. 157, 106775. https://doi.org/10.1016/j.envint.2021.106775 (2021).
Zhang, Y. et al. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem. Res. 37, 1409–1419. https://doi.org/10.1007/s11064-012-0724-2 (2012).
Lei, J., Deng, Y. & Ma, S. Downregulation of TGIF2 is possibly correlated with neuronal apoptosis and autism-like symptoms in mice. Brain Behav. 12, e2610. https://doi.org/10.1002/brb3.2610 (2022).
Palomer, E. et al. Epigenetic repression of Wnt receptors in AD: A role for Sirtuin2-induced H4K16ac deacetylation of Frizzled1 and Frizzled7 promoters. Mol. Psychiatry 27, 3024–3033. https://doi.org/10.1038/s41380-022-01492-z (2022).
Moreland, T. & Poulain, F. E. To stick or not to stick: The multiple roles of cell adhesion molecules in neural circuit assembly. Front. Neurosci. 16, 889155. https://doi.org/10.3389/fnins.2022.889155 (2022).
Gecz, J. & Thomas, P. Q. Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr. Opin. Genet. Dev. 65, 169–175. https://doi.org/10.1016/j.gde.2020.06.012 (2020).
Taylor, S. C. et al. The role of synaptic cell adhesion molecules and associated scaffolding proteins in social affiliative behaviors. Biol. Psychiatry 88, 442–451. https://doi.org/10.1016/j.biopsych.2020.02.012 (2020).
Choi, J. Y. et al. Elevated cerebrospinal fluid and plasma N-cadherin in Alzheimer disease. J. Neuropathol. Exp. Neurol. 79, 484–492. https://doi.org/10.1093/jnen/nlaa019 (2020).
Vezzoli, E. et al. Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington’s disease. J. Clin. Invest. 129, 2390–2403. https://doi.org/10.1172/jci120616 (2019).
Wei, Z. et al. Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol. Lett. 212, 212–221. https://doi.org/10.1016/j.toxlet.2012.05.023 (2012).
Zhu, Y. P. et al. Di-n-butyl phthalate (DBP) reduces epithelial-mesenchymal transition via IP3R in hypospadias during maternal exposure. Ecotoxicol. Environ. Saf. 192, 110201. https://doi.org/10.1016/j.ecoenv.2020.110201 (2020).
Wu, C. F. et al. Cohort profile: The Taiwan Maternal and Infant Cohort Study (TMICS) of phthalate exposure and health risk assessment. Int. J. Epidemiol. 47, 1047–1047j. https://doi.org/10.1093/ije/dyy067 (2018).
Tsai, T. L. et al. Association between prenatal exposure to metals and atopic dermatitis among children aged 4 years in Taiwan. JAMA Netw. Open 4, e2131327. https://doi.org/10.1001/jamanetworkopen.2021.31327 (2021).
Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 11, 587. https://doi.org/10.1186/1471-2105-11-587 (2010).
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).