Monday, September 25, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Regulation and function of adiponectin in the intestinal epithelial cells in response to Trichinella spiralis infection – Scientific Reports


  • Taghipour, A. et al. Global prevalence of intestinal parasitic infections and associated risk factors in pregnant women: A systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 115, 457–470. https://doi.org/10.1093/trstmh/traa101 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angkasekwinai, P. et al. Interleukin-25 (IL-25) promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigen-specific IL-9 response. Infect. Immun. 81, 3731–3741. https://doi.org/10.1128/iai.00646-13 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimokawa, C. et al. Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. Immunity 46, 863-874.e864. https://doi.org/10.1016/j.immuni.2017.04.017 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphreys, N. E., Xu, D., Hepworth, M. R., Liew, F. Y. & Grencis, R. K. IL-33, a potent inducer of adaptive immunity to intestinal nematodes1. J. Immunol. 180, 2443–2449. https://doi.org/10.4049/jimmunol.180.4.2443 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cortés, A., Muñoz-Antoli, C., Esteban, J. G. & Toledo, R. Th2 and Th1 responses: Clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 33, 678–693. https://doi.org/10.1016/j.pt.2017.05.004 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, N. L. & Loke, P. Recent advances in type-2-cell-mediated immunity: Insights from helminth infection. Immunity 47, 1024–1036. https://doi.org/10.1016/j.immuni.2017.11.015 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorobetea, D., Svensson-Frej, M. & Grencis, R. Immunity to gastrointestinal nematode infections. Mucosal Immunol. 11, 304–315. https://doi.org/10.1038/mi.2017.113 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bąska, P. & Norbury, L. J. The role of the intestinal epithelium in the “Weep and Sweep” response during gastro-intestinal helminth Infections. Anim. Open Access J. MDPI. https://doi.org/10.3390/ani12020175 (2022).

    Article 

    Google Scholar
     

  • Wiria, A. E., Djuardi, Y., Supali, T., Sartono, E. & Yazdanbakhsh, M. Helminth infection in populations undergoing epidemiological transition: A friend or foe?. Semin. Immunopathol. 34, 889–901. https://doi.org/10.1007/s00281-012-0358-0 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Rennie, C., Fernandez, R., Donnelly, S. & McGrath, K. C. The impact of helminth infection on the incidence of metabolic syndrome: A systematic review and meta-analysis. Front. Endocrinol. 12, 728396. https://doi.org/10.3389/fendo.2021.728396 (2021).

    Article 

    Google Scholar
     

  • Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246. https://doi.org/10.1038/nature14115 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. & Qiu, Y. Type 2 immune regulation of adipose tissue homeostasis. Curr. Opin. Physiol. 12, 20–25. https://doi.org/10.1016/j.cophys.2019.04.018 (2019).

    Article 

    Google Scholar
     

  • Moyat, M., Coakley, G. & Harris, N. L. The interplay of type 2 immunity, helminth infection and the microbiota in regulating metabolism. Clin. Transl. Immunol. 8, e01089. https://doi.org/10.1002/cti2.1089 (2019).

    Article 

    Google Scholar
     

  • Michailidou, Z., Gomez-Salazar, M. & Alexaki, V. I. Innate immune cells in the adipose tissue in health and metabolic disease. J. Innate Immun. 14, 4–30. https://doi.org/10.1159/000515117 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okada, H. et al. Effect of nematode Trichinella infection on glucose tolerance and status of macrophage in obese mice. Endocr. J. 60, 1241–1249. https://doi.org/10.1507/endocrj.ej13-0312 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, S. A. et al. Trichinella spiralis infection ameliorated diet-induced obesity model in mice. Int. J. Parasitol. 51, 63–71. https://doi.org/10.1016/j.ijpara.2020.07.012 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hams, E. et al. The helminth T2 RNase ω1 promotes metabolic homeostasis in an IL-33- and group 2 innate lymphoid cell-dependent mechanism. FASEB J. 30, 824–835. https://doi.org/10.1096/fj.15-277822 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Zande, H. J. P. et al. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. FASEB J. 35, e21331. https://doi.org/10.1096/fj.202001973R (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khudhair, Z. et al. Gastrointestinal helminth infection improves insulin sensitivity, decreases systemic inflammation, and alters the composition of gut microbiota in distinct mouse models of type 2 diabetes. Front. Endocrinol. 11, 606530. https://doi.org/10.3389/fendo.2020.606530 (2020).

    Article 

    Google Scholar
     

  • Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science (New York, N.Y.) 332, 243–247. https://doi.org/10.1126/science.1201475 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussaarts, L. et al. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice. FASEB J. 29, 3027–3039. https://doi.org/10.1096/fj.14-266239 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yahya, R. S., Awad, S. I., Kizilbash, N., El-Baz, H. A. & Atia, G. Enteric parasites can disturb leptin and adiponectin levels in children. Arch. Med. Sci. AMS 14, 101–106. https://doi.org/10.5114/aoms.2016.60707 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Worthington, J. J., Samuelson, L. C., Grencis, R. K. & McLaughlin, J. T. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion. PLoS Pathog. 9, e1003122. https://doi.org/10.1371/journal.ppat.1003122 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lõhmus, M., Moalem, S. & Björklund, M. Leptin, a tool of parasites?. Biol. Lett. 8, 849–852. https://doi.org/10.1098/rsbl.2012.0385 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahapary, D. L. et al. Effect of anthelmintic treatment on insulin resistance: A cluster-randomized, placebo-controlled trial in Indonesia. Clin. Infect. Dis. 65, 764–771. https://doi.org/10.1093/cid/cix416 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajamanickam, A. et al. Impact of helminth infection on metabolic and immune homeostasis in non-diabetic obesity. Front. Immunol. 11, 2195. https://doi.org/10.3389/fimmu.2020.02195 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wulster-Radcliffe, M. C., Ajuwon, K. M., Wang, J., Christian, J. A. & Spurlock, M. E. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun. 316, 924–929. https://doi.org/10.1016/j.bbrc.2004.02.130 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohashi, K. et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160. https://doi.org/10.1074/jbc.M109.088708 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovren, F. et al. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am. J. Physiol. Heart Circ. Physiol. 299, H656-663. https://doi.org/10.1152/ajpheart.00115.2010 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obeid, S. et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J. Biol. Chem. 292, 6569–6582. https://doi.org/10.1074/jbc.M115.712646 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surendar, J. et al. Adiponectin limits IFN-γ and IL-17 producing CD4 T cells in obesity by restraining cell intrinsic glycolysis. Front. Immunol. 10, 2555. https://doi.org/10.3389/fimmu.2019.02555 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattioli, B., Straface, E., Quaranta, M. G., Giordani, L. & Viora, M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol. (Baltimore, Md.: 1950) 174, 6820–6828. https://doi.org/10.4049/jimmunol.174.11.6820 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y., Sun, R., You, L., Gao, C. & Tian, Z. Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem. Biophys. Res. Commun. 300, 247–252. https://doi.org/10.1016/s0006-291x(02)02838-3 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamas, B. et al. Leptin modulates dose-dependently the metabolic and cytolytic activities of NK-92 cells. J. Cell. Physiol. 228, 1202–1209. https://doi.org/10.1002/jcp.24273 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldefie-Chezet, F., Poulin, A., Tridon, A., Sion, B. & Vasson, M. P. Leptin: A potential regulator of polymorphonuclear neutrophil bactericidal action?. J. Leukoc. Biol. 69, 414–418 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarkesh-Esfahani, H. et al. Leptin indirectly activates human neutrophils via induction of TNF-alpha. J. Immunol. (Baltimore, Md.: 1950) 172, 1809–1814. https://doi.org/10.4049/jimmunol.172.3.1809 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Gabay, C., Dreyer, M., Pellegrinelli, N., Chicheportiche, R. & Meier, C. A. Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes. J. Clin. Endocrinol. Metab. 86, 783–791. https://doi.org/10.1210/jcem.86.2.7245 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acedo, S. C., Gambero, S., Cunha, F. G., Lorand-Metze, I. & Gambero, A. Participation of leptin in the determination of the macrophage phenotype: An additional role in adipocyte and macrophage crosstalk. In Vitro Cell. Dev. Biol. Anim. 49, 473–478. https://doi.org/10.1007/s11626-013-9629-x (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, Q. L., Liu, S., Cao, X. & Lu, L. Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells. Eur. J. Immunol. 36, 3118–3130. https://doi.org/10.1002/eji.200636602 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez, O. & Garza, K. M. Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells. Int. Immunol. 26, 627–636. https://doi.org/10.1093/intimm/dxu067 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frühbeck, G., Catalán, V., Rodríguez, A. & Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 7, 57–62. https://doi.org/10.1080/21623945.2017.1402151 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senkus, K. E., Crowe-White, K. M., Bolland, A. C., Locher, J. L. & Ard, J. D. Changes in adiponectin:leptin ratio among older adults with obesity following a 12-month exercise and diet intervention. Nutr. Diabetes 12, 30. https://doi.org/10.1038/s41387-022-00207-1 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749. https://doi.org/10.1074/jbc.270.45.26746 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trayhurn, P., Thomas, M. E., Duncan, J. S. & Rayner, D. V. Effects of fasting and refeeding on ob gene expression in white adipose tissue of lean and obese (oblob) mice. FEBS Lett. 368, 488–490. https://doi.org/10.1016/0014-5793(95)00719-p (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tae, C. H. et al. Involvement of adiponectin in early stage of colorectal carcinogenesis. BMC Cancer 14, 811. https://doi.org/10.1186/1471-2407-14-811 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, X. et al. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus. Sci. Rep. 5, 18588. https://doi.org/10.1038/srep18588 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merigo, F. et al. Immunolocalization of leptin and leptin receptor in colorectal mucosa of ulcerative colitis, Crohn’s disease and control subjects with no inflammatory bowel disease. Cell Tissue Res. 383, 1103–1122. https://doi.org/10.1007/s00441-020-03297-4 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puzio, I. et al. Alterations in small intestine and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as immunoexpression of tight junction proteins in intestinal mucosa after gastrectomy in rat model. J. Clin. Med. https://doi.org/10.3390/jcm10020272 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishihara, R. et al. Intestinal epithelial cells promote secretion of leptin and adiponectin in adipocytes. Biochem. Biophys. Res. Commun. 458, 362–368. https://doi.org/10.1016/j.bbrc.2015.01.118 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. B. et al. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J. Allergy Clin. Immunol. 137, 1216-1225.e1215. https://doi.org/10.1016/j.jaci.2015.09.019 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, W. et al. Effects of Qing Hua Chang Yin on lipopolysaccharide-induced intestinal epithelial tight junction injury in Caco-2 cells. Mol. Med. Rep. https://doi.org/10.3892/mmr.2021.11844 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ming, L. et al. Invasion by Trichinella spiralis infective larvae affects the levels of inflammatory cytokines in intestinal epithelial cells in vitro. Exp. Parasitol. 170, 220–226. https://doi.org/10.1016/j.exppara.2016.10.003 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y. Y. et al. Proteases secreted by Trichinella spiralis intestinal infective larvae damage the junctions of the intestinal epithelial cell monolayer and mediate larval invasion. Vet. Res. 53, 19. https://doi.org/10.1186/s13567-022-01032-1 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, P. K. et al. Human defensin-5 blocks ethanol and colitis-induced dysbiosis, tight junction disruption and inflammation in mouse intestine. Sci. Rep. 8, 16241. https://doi.org/10.1038/s41598-018-34263-4 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Daidzein protects Caco-2 cells against lipopolysaccharide-induced intestinal epithelial barrier injury by suppressing PI3K/AKT and P38 pathways. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules27248928 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Disruption of epithelial barrier of Caco-2 cell monolayers by excretory secretory products of Trichinella spiralis might be related to serine protease. Front. Microbiol. 12, 634185. https://doi.org/10.3389/fmicb.2021.634185 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozio, E. & Khamboonruang, C. Trichinellosis in Thailand: Epidemiology and biochemical identification of the aethiological agent. Trop. Med. Parasitol. 40, 73–74 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Angkasekwinai, P. et al. ILC2s activated by IL-25 promote antigen-specific Th2 and Th9 functions that contribute to the control of Trichinella spiralis infection. PLoS ONE 12, e0184684. https://doi.org/10.1371/journal.pone.0184684 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225. https://doi.org/10.1038/nature16161 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Howitt, M. R. et al. The taste receptor TAS1R3 regulates small intestinal tuft cell homeostasis. ImmunoHorizons 4, 23–32. https://doi.org/10.4049/immunohorizons.1900099 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. J. et al. Globular adiponectin inhibits lipopolysaccharide-primed inflammasomes activation in macrophages via autophagy induction: The critical role of AMPK signaling. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18061275 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: