Saturday, June 10, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Resting-state oscillations reveal disturbed excitation–inhibition ratio in Alzheimer’s disease patients – Scientific Reports


  • Korzhova, V. et al. Long-term dynamics of aberrant neuronal activity in awake Alzheimer’s disease transgenic mice. Commun. Biol. 4(1), 1368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busche, M. A. et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U S A 109(22), 8740–8745 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zott, B. et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science 365(6453), 559–565 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busche, M. A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896), 1686–1689 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, S. S. et al. Tipping the scales: Peptide-dependent dysregulation of neural circuit dynamics in Alzheimer’s disease. Neuron 107(3), 417–435 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busche, M. A. et al. Tau impairs neural circuits, dominating amyloid-beta effects Alzheimer models in vivo. Nat. Neurosci. 22(1), 57–64 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zott, B. et al. What happens with the circuit in Alzheimer’s disease in mice and humans?. Annu. Rev. Neurosci. 41, 277–297 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busche, M.A., & Konnerth, A. Impairments of neural circuit function in Alzheimer’s disease. Philos. Trans. R Soc. Lond. B Biol. Sci. 371, 1700 (2016).

  • Friedman, D., Honig, L. S. & Scarmeas, N. Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci. Ther. 18(4), 285–294 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Vossel, K. A. et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70(9), 1158–1166 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cretin, B. et al. Epileptic prodromal Alzheimer’s disease, a retrospective study of 13 new cases: Expanding the spectrum of alzheimer’s disease to an epileptic variant?. J. Alzheimers Dis. 52(3), 1125–1133 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sarkis, R. A. et al. Clinical and neurophysiologic characteristics of unprovoked seizures in patients diagnosed with dementia. J. Neuropsychiatry Clin. Neurosci. 28(1), 56–61 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80(6), 858–870 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvath, A. A. et al. Subclinical epileptiform activity accelerates the progression of Alzheimer’s disease: A long-term EEG study. Clin. Neurophysiol. 132(8), 1982–1989 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lam, A. D. et al. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology 95(16), e2259–e2270 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furbass, F. et al. An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard. Clin. Neurophysiol. 131(6), 1174–1179 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jing, J. et al. Development of expert-level automated detection of epileptiform discharges during electroencephalogram interpretation. JAMA Neurol. 77(1), 103–108 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • da Silva Lourenco, C., Tjepkema-Cloostermans, M. C. & van Putten, M. Machine learning for detection of interictal epileptiform discharges. Clin. Neurophysiol. 132(7), 1433–1443 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lam, A. D. et al. Widespread changes in network activity allow non-invasive detection of mesial temporal lobe seizures. Brain 139(Pt 10), 2679–2693 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, A. D., Cole, A. J. & Cash, S. S. New approaches to studying silent mesial temporal lobe seizures in Alzheimer’s disease. Front. Neurol. 10, 959 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranasinghe, K. G. et al. Neuronal synchrony abnormalities associated with subclinical epileptiform activity in early-onset Alzheimer’s disease. Brain 145(2), 744–753 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23(6), 678–680 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuesta, P. et al. Gamma band functional connectivity reduction in patients with amnestic mild cognitive impairment and epileptiform activity. Brain Commun. 4(2), 12 (2022).

    Article 

    Google Scholar
     

  • Nayak, D. et al. Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges. Clin. Neurophysiol. 115(6), 1423–1435 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Koessler, L. et al. Catching the invisible: Mesial temporal source contribution to simultaneous EEG and SEEG recordings. Brain Topogr. 28(1), 5–20 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Babiloni, C. et al. Abnormalities of cortical sources of resting state delta electroencephalographic rhythms are related to epileptiform activity in patients with amnesic mild cognitive impairment not due to Alzheimer’s disease. Front Neurol. 11, 514136 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Nifterick, A. M. et al. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res. Ther. 14(1), 101 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanovski, L. et al. Linking molecular pathways and large-scale computational modeling to assess candidate disease mechanisms and pharmacodynamics in Alzheimer’s disease. Front. Comput. Neurosci. 13, 54 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranasinghe, K.G., et al. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease. Elife 11 (2022).

  • Maestu, F. et al. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res. Rev. 69, 101372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waschke, L., et al. Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent. Elife 10 (2021).

  • Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23(12), 1655–1665 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 158, 70–78 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bruining, H. et al. Measurement of excitation–inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci. Rep. 10(1), 9195 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardstone, R. et al. Detrended fluctuation analysis: A scale-free view on neuronal oscillations. Front. Physiol. 3, 450 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montez, T. et al. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc. Natl. Acad. Sci. U S A 106(5), 1614–1619 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beggs, J. M. The criticality hypothesis: How local cortical networks might optimize information processing. Philos. Trans. A Math. Phys. Eng. Sci. 2008(366), 329–343 (1864).

    MATH 

    Google Scholar
     

  • Beggs, J. M. The critically tuned cortex. Neuron 104(4), 623–624 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Byrne, J. & Jerbi, K. How critical is brain criticality?. Trends Neurosci. 45(11), 820–837 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houtman, S. J. et al. STXBP1 syndrome is characterized by inhibition-dominated dynamics of resting-state EEG. Front. Physiol. 12, 775172 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engels, M. M. A. et al. Alzheimer’s disease: The state of the art in resting-state magnetoencephalography. Clin. Neurophysiol. 128(8), 1426–1437 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiesman, A. I. et al. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer’s disease. Brain 145(6), 2177–2189 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, A. et al. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 141(5), 1470–1485 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luppi, J. J. et al. Oscillatory activity of the hippocampus in prodromal Alzheimer’s disease: A source-space magnetoencephalography study. J. Alzheimers Dis. 87(1), 317–333 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouw, A. A. et al. EEG spectral analysis as a putative early prognostic biomarker in nondemented, amyloid positive subjects. Neurobiol. Aging 57, 133–142 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gomez, C. et al. Spectral changes in spontaneous MEG activity across the lifespan. J. Neural. Eng. 10(6), 066006 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ott, L. R. et al. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 244, 118552 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • John, E. R. et al. Developmental equations for the electroencephalogram. Science 210(4475), 1255–1258 (1980).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Sanz, D., Serrano, N. & Maestu, F. The role of magnetoencephalography in the early stages of Alzheimer’s disease. Front. Neurosci. 12, 572 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Haan, W. et al. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput. Biol. 8(8), e1002582 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stam, C. J. et al. Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin. Neurophysiol. 116(3), 708–715 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, D. et al. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. Neuroimage 224, 117441 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Westlye, L. T. et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20(9), 2055–2068 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol. 17(9), 545–563 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pusil, S. et al. Hypersynchronization in mild cognitive impairment: The “X” model. Brain 142(12), 3936–3950 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Monto, S. et al. Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG. Cereb. Cortex 17(6), 1386–1393 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Auno, S. et al. Detrended fluctuation analysis in the presurgical evaluation of parietal lobe epilepsy patients. Clin. Neurophysiol. 132(7), 1515–1525 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Javed, E., et al. E/I unbalance and aberrant oscillation dynamics predict preclinical Alzheimer’s disease. bioRxiv, 2022: p. 2022.12. 22.521549.

  • Priesemann, V. et al. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fosque, L. J. et al. Evidence for quasicritical brain dynamics. Phys. Rev. Lett. 126(9), 098101 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Cañada, P., et al. Combining aperiodic 1/f slopes and brain simulation: An EEG/MEG proxy marker of excitation/inhibition imbalance in Alzheimer’s disease. bioRxiv, 2023: p. 2022.12.21.521529.

  • Voytek, B. et al. Age-related changes in 1/f neural electrophysiological noise. J. Neurosci. 35(38), 13257–13265 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thuwal, K., Banerjee, A. & Roy, D. Aperiodic and periodic components of ongoing oscillatory brain dynamics link distinct functional aspects of cognition across adult lifespan. eNeuro 8(5), 1 (2021).

    Article 

    Google Scholar
     

  • Merkin, A. Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha? In S. Sghirripa, Editor. 2023, Neurobiology of Aging 78–87.

  • Smith, A.E., Chau, A., Greaves, D., Keage, H., & Feuerriegel, D. C. Resting EEG power spectra across middle to late life: Associations with age, cognition, APOE-ɛ4 carriage and cardiometabolic burden. bioRxiv (2022).

  • Ouyang, G. et al. Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. Neuroimage 205, 116304 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Nolte, G., Aburidi, M. & Engel, A. K. Robust calculation of slopes in detrended fluctuation analysis and its application to envelopes of human alpha rhythms. Sci. Rep. 9(1), 6339 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerster, M. et al. Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations. Neuroinformatics 20(4), 991–1012 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, T. et al. Electrophysiological biomarkers of epileptogenicity in alzheimer’s disease. Front. Hum. Neurosci. 15, 747077 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouw, A. A. et al. Routine magnetoencephalography in memory clinic patients: A machine learning approach. Alzheimers Dement. (Amst) 13(1), e12227 (2021).

    PubMed 

    Google Scholar
     

  • Hillebrand, A. et al. Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution. Neuroimage 59(4), 3909–3921 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hillebrand, A. et al. Detecting epileptiform activity from deeper brain regions in spatially filtered MEG data. Clin. Neurophysiol. 127(8), 2766–2769 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzgibbon, A. W. Robust registration of 2D and 3D point sets. Image Vis. Comput. 21(13–14), 1145–1153 (2003).

    Article 

    Google Scholar
     

  • Sekihara, K. et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans. Biomed. Eng. 51(10), 1726–1734 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheyne, D. et al. Event-related beamforming: A robust method for presurgical functional mapping using MEG. Clin. Neurophysiol. 118(8), 1691–1704 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Engels, M. M. et al. Declining functional connectivity and changing hub locations in Alzheimer’s disease: An EEG study. BMC Neurol 15, 145 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139(Pt 2), 547–562 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, M. et al. Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: An MEG-based multiplex network study. Brain 140(5), 1466–1485 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3), 467–474 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linkenkaer-Hansen, K. et al. Genetic contributions to long-range temporal correlations in ongoing oscillations. J. Neurosci. 27(50), 13882–13889 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engels, M. M. et al. Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease: An MEG study with virtual electrodes. Front. Hum. Neurosci. 10, 238 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moretti, D. V. et al. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 115(2), 299–308 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Peng, C. K. et al. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J. Electrocardiol. 28, 59–65 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Linkenkaer-Hansen, K. et al. Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21(4), 1370–1377 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palva, J. M. et al. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. USA 110(9), 3585–3590 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poil, S. S. et al. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J. Neurosci. 32(29), 9817–9823 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini, Y., Krieger, A. M. & Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93(3), 491–507 (2006).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: