Korzhova, V. et al. Long-term dynamics of aberrant neuronal activity in awake Alzheimer’s disease transgenic mice. Commun. Biol. 4(1), 1368 (2021).
Busche, M. A. et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U S A 109(22), 8740–8745 (2012).
Zott, B. et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science 365(6453), 559–565 (2019).
Busche, M. A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896), 1686–1689 (2008).
Harris, S. S. et al. Tipping the scales: Peptide-dependent dysregulation of neural circuit dynamics in Alzheimer’s disease. Neuron 107(3), 417–435 (2020).
Busche, M. A. et al. Tau impairs neural circuits, dominating amyloid-beta effects Alzheimer models in vivo. Nat. Neurosci. 22(1), 57–64 (2019).
Zott, B. et al. What happens with the circuit in Alzheimer’s disease in mice and humans?. Annu. Rev. Neurosci. 41, 277–297 (2018).
Busche, M.A., & Konnerth, A. Impairments of neural circuit function in Alzheimer’s disease. Philos. Trans. R Soc. Lond. B Biol. Sci. 371, 1700 (2016).
Friedman, D., Honig, L. S. & Scarmeas, N. Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci. Ther. 18(4), 285–294 (2012).
Vossel, K. A. et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 70(9), 1158–1166 (2013).
Cretin, B. et al. Epileptic prodromal Alzheimer’s disease, a retrospective study of 13 new cases: Expanding the spectrum of alzheimer’s disease to an epileptic variant?. J. Alzheimers Dis. 52(3), 1125–1133 (2016).
Sarkis, R. A. et al. Clinical and neurophysiologic characteristics of unprovoked seizures in patients diagnosed with dementia. J. Neuropsychiatry Clin. Neurosci. 28(1), 56–61 (2016).
Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80(6), 858–870 (2016).
Horvath, A. A. et al. Subclinical epileptiform activity accelerates the progression of Alzheimer’s disease: A long-term EEG study. Clin. Neurophysiol. 132(8), 1982–1989 (2021).
Lam, A. D. et al. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology 95(16), e2259–e2270 (2020).
Furbass, F. et al. An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard. Clin. Neurophysiol. 131(6), 1174–1179 (2020).
Jing, J. et al. Development of expert-level automated detection of epileptiform discharges during electroencephalogram interpretation. JAMA Neurol. 77(1), 103–108 (2020).
da Silva Lourenco, C., Tjepkema-Cloostermans, M. C. & van Putten, M. Machine learning for detection of interictal epileptiform discharges. Clin. Neurophysiol. 132(7), 1433–1443 (2021).
Lam, A. D. et al. Widespread changes in network activity allow non-invasive detection of mesial temporal lobe seizures. Brain 139(Pt 10), 2679–2693 (2016).
Lam, A. D., Cole, A. J. & Cash, S. S. New approaches to studying silent mesial temporal lobe seizures in Alzheimer’s disease. Front. Neurol. 10, 959 (2019).
Ranasinghe, K. G. et al. Neuronal synchrony abnormalities associated with subclinical epileptiform activity in early-onset Alzheimer’s disease. Brain 145(2), 744–753 (2022).
Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23(6), 678–680 (2017).
Cuesta, P. et al. Gamma band functional connectivity reduction in patients with amnestic mild cognitive impairment and epileptiform activity. Brain Commun. 4(2), 12 (2022).
Nayak, D. et al. Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges. Clin. Neurophysiol. 115(6), 1423–1435 (2004).
Koessler, L. et al. Catching the invisible: Mesial temporal source contribution to simultaneous EEG and SEEG recordings. Brain Topogr. 28(1), 5–20 (2015).
Babiloni, C. et al. Abnormalities of cortical sources of resting state delta electroencephalographic rhythms are related to epileptiform activity in patients with amnesic mild cognitive impairment not due to Alzheimer’s disease. Front Neurol. 11, 514136 (2020).
van Nifterick, A. M. et al. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res. Ther. 14(1), 101 (2022).
Stefanovski, L. et al. Linking molecular pathways and large-scale computational modeling to assess candidate disease mechanisms and pharmacodynamics in Alzheimer’s disease. Front. Comput. Neurosci. 13, 54 (2019).
Ranasinghe, K.G., et al. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease. Elife 11 (2022).
Maestu, F. et al. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res. Rev. 69, 101372 (2021).
Waschke, L., et al. Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent. Elife 10 (2021).
Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23(12), 1655–1665 (2020).
Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 158, 70–78 (2017).
Bruining, H. et al. Measurement of excitation–inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci. Rep. 10(1), 9195 (2020).
Hardstone, R. et al. Detrended fluctuation analysis: A scale-free view on neuronal oscillations. Front. Physiol. 3, 450 (2012).
Montez, T. et al. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc. Natl. Acad. Sci. U S A 106(5), 1614–1619 (2009).
Beggs, J. M. The criticality hypothesis: How local cortical networks might optimize information processing. Philos. Trans. A Math. Phys. Eng. Sci. 2008(366), 329–343 (1864).
Beggs, J. M. The critically tuned cortex. Neuron 104(4), 623–624 (2019).
O’Byrne, J. & Jerbi, K. How critical is brain criticality?. Trends Neurosci. 45(11), 820–837 (2022).
Houtman, S. J. et al. STXBP1 syndrome is characterized by inhibition-dominated dynamics of resting-state EEG. Front. Physiol. 12, 775172 (2021).
Engels, M. M. A. et al. Alzheimer’s disease: The state of the art in resting-state magnetoencephalography. Clin. Neurophysiol. 128(8), 1426–1437 (2017).
Wiesman, A. I. et al. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer’s disease. Brain 145(6), 2177–2189 (2022).
Nakamura, A. et al. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 141(5), 1470–1485 (2018).
Luppi, J. J. et al. Oscillatory activity of the hippocampus in prodromal Alzheimer’s disease: A source-space magnetoencephalography study. J. Alzheimers Dis. 87(1), 317–333 (2022).
Gouw, A. A. et al. EEG spectral analysis as a putative early prognostic biomarker in nondemented, amyloid positive subjects. Neurobiol. Aging 57, 133–142 (2017).
Gomez, C. et al. Spectral changes in spontaneous MEG activity across the lifespan. J. Neural. Eng. 10(6), 066006 (2013).
Ott, L. R. et al. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 244, 118552 (2021).
John, E. R. et al. Developmental equations for the electroencephalogram. Science 210(4475), 1255–1258 (1980).
Lopez-Sanz, D., Serrano, N. & Maestu, F. The role of magnetoencephalography in the early stages of Alzheimer’s disease. Front. Neurosci. 12, 572 (2018).
de Haan, W. et al. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput. Biol. 8(8), e1002582 (2012).
Stam, C. J. et al. Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin. Neurophysiol. 116(3), 708–715 (2005).
Beck, D. et al. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. Neuroimage 224, 117441 (2021).
Westlye, L. T. et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20(9), 2055–2068 (2010).
Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol. 17(9), 545–563 (2021).
Pusil, S. et al. Hypersynchronization in mild cognitive impairment: The “X” model. Brain 142(12), 3936–3950 (2019).
Monto, S. et al. Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG. Cereb. Cortex 17(6), 1386–1393 (2007).
Auno, S. et al. Detrended fluctuation analysis in the presurgical evaluation of parietal lobe epilepsy patients. Clin. Neurophysiol. 132(7), 1515–1525 (2021).
Javed, E., et al. E/I unbalance and aberrant oscillation dynamics predict preclinical Alzheimer’s disease. bioRxiv, 2022: p. 2022.12. 22.521549.
Priesemann, V. et al. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014).
Fosque, L. J. et al. Evidence for quasicritical brain dynamics. Phys. Rev. Lett. 126(9), 098101 (2021).
Martínez-Cañada, P., et al. Combining aperiodic 1/f slopes and brain simulation: An EEG/MEG proxy marker of excitation/inhibition imbalance in Alzheimer’s disease. bioRxiv, 2023: p. 2022.12.21.521529.
Voytek, B. et al. Age-related changes in 1/f neural electrophysiological noise. J. Neurosci. 35(38), 13257–13265 (2015).
Thuwal, K., Banerjee, A. & Roy, D. Aperiodic and periodic components of ongoing oscillatory brain dynamics link distinct functional aspects of cognition across adult lifespan. eNeuro 8(5), 1 (2021).
Merkin, A. Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha? In S. Sghirripa, Editor. 2023, Neurobiology of Aging 78–87.
Smith, A.E., Chau, A., Greaves, D., Keage, H., & Feuerriegel, D. C. Resting EEG power spectra across middle to late life: Associations with age, cognition, APOE-ɛ4 carriage and cardiometabolic burden. bioRxiv (2022).
Ouyang, G. et al. Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. Neuroimage 205, 116304 (2020).
Nolte, G., Aburidi, M. & Engel, A. K. Robust calculation of slopes in detrended fluctuation analysis and its application to envelopes of human alpha rhythms. Sci. Rep. 9(1), 6339 (2019).
Gerster, M. et al. Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations. Neuroinformatics 20(4), 991–1012 (2022).
Yu, T. et al. Electrophysiological biomarkers of epileptogenicity in alzheimer’s disease. Front. Hum. Neurosci. 15, 747077 (2021).
Gouw, A. A. et al. Routine magnetoencephalography in memory clinic patients: A machine learning approach. Alzheimers Dement. (Amst) 13(1), e12227 (2021).
Hillebrand, A. et al. Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution. Neuroimage 59(4), 3909–3921 (2012).
Hillebrand, A. et al. Detecting epileptiform activity from deeper brain regions in spatially filtered MEG data. Clin. Neurophysiol. 127(8), 2766–2769 (2016).
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002).
Fitzgibbon, A. W. Robust registration of 2D and 3D point sets. Image Vis. Comput. 21(13–14), 1145–1153 (2003).
Sekihara, K. et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans. Biomed. Eng. 51(10), 1726–1734 (2004).
Cheyne, D. et al. Event-related beamforming: A robust method for presurgical functional mapping using MEG. Clin. Neurophysiol. 118(8), 1691–1704 (2007).
Engels, M. M. et al. Declining functional connectivity and changing hub locations in Alzheimer’s disease: An EEG study. BMC Neurol 15, 145 (2015).
Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139(Pt 2), 547–562 (2016).
Yu, M. et al. Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: An MEG-based multiplex network study. Brain 140(5), 1466–1485 (2017).
Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3), 467–474 (2012).
Linkenkaer-Hansen, K. et al. Genetic contributions to long-range temporal correlations in ongoing oscillations. J. Neurosci. 27(50), 13882–13889 (2007).
Engels, M. M. et al. Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease: An MEG study with virtual electrodes. Front. Hum. Neurosci. 10, 238 (2016).
Moretti, D. V. et al. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 115(2), 299–308 (2004).
Peng, C. K. et al. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J. Electrocardiol. 28, 59–65 (1995).
Linkenkaer-Hansen, K. et al. Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21(4), 1370–1377 (2001).
Palva, J. M. et al. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. USA 110(9), 3585–3590 (2013).
Poil, S. S. et al. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J. Neurosci. 32(29), 9817–9823 (2012).
Benjamini, Y., Krieger, A. M. & Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93(3), 491–507 (2006).