Monday, October 2, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult – Scientific Reports


  • Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Primers. 1, 15018. https://doi.org/10.1038/nrdp.2015.18 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045. https://doi.org/10.2215/cjn.11491116 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Lee, K., Ni, Z. & He, J. C. Diabetic kidney disease: Challenges, advances, and opportunities. Kidney Dis. 6, 215–225. https://doi.org/10.1159/000506634 (2020).

    Article 

    Google Scholar
     

  • Qi, R. & Yang, C. Renal tubular epithelial cells: The neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 9, 1126. https://doi.org/10.1038/s41419-018-1157-x (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, R. E. Proximal tubulopathy: Prime mover and key therapeutic target in diabetic kidney disease. Diabetes 66, 791–800. https://doi.org/10.2337/db16-0796 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. C., Chang, Y. H., Yang, S. Y., Wu, K. D. & Chu, T. S. Update of pathophysiology and management of diabetic kidney disease. J. Formosan Med. Assoc. Taiwan yi zhi 117, 662–675. https://doi.org/10.1016/j.jfma.2018.02.007 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. et al. Update on the mechanisms of tubular cell injury in diabetic kidney disease. Front. Med. 8, 661076. https://doi.org/10.3389/fmed.2021.661076 (2021).

    Article 

    Google Scholar
     

  • Shen, S., Ji, C. & Wei, K. Cellular senescence and regulated cell death of tubular epithelial cells in diabetic kidney disease. Front. Endocrinol. 13, 924299. https://doi.org/10.3389/fendo.2022.924299 (2022).

    Article 

    Google Scholar
     

  • Wiley, C. D. Role of senescent renal cells in pathophysiology of diabetic kidney disease. Curr. Diabetes Rep. 20, 33. https://doi.org/10.1007/s11892-020-01314-y (2020).

    Article 

    Google Scholar
     

  • Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1563-1573. https://doi.org/10.1152/ajprenal.90302.2008 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Y. et al. The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int. 100, 1037–1053. https://doi.org/10.1016/j.kint.2021.06.031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balsara, R. D. & Ploplis, V. A. Plasminogen activator inhibitor-1: The double-edged sword in apoptosis. Thromb. Haemostasis 100, 1029–1036 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cesari, M., Pahor, M. & Incalzi, R. A. Plasminogen activator inhibitor-1 (PAI-1): A key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc. Ther. 28, e72-91. https://doi.org/10.1111/j.1755-5922.2010.00171.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, C. et al. Serpine 1 induces alveolar type II cell senescence through activating p53–p21-Rb pathway in fibrotic lung disease. Aging Cell 16, 1114–1124. https://doi.org/10.1111/acel.12643 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samarakoon, R., Higgins, S. P., Higgins, C. E. & Higgins, P. J. The TGF-β1/p53/PAI-1 signaling axis in vascular senescence: Role of caveolin-1. Biomolecules https://doi.org/10.3390/biom9080341 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, C. et al. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol. Med. 13, e14146. https://doi.org/10.15252/emmm.202114146 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, R. et al. Glycogen synthase kinase 3beta: A novel marker and modulator of inflammatory injury in chronic renal allograft disease. Am. J. Transplant. 8, 1852–1863. https://doi.org/10.1111/j.1600-6143.2008.02319.x (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slyne, J., Slattery, C., McMorrow, T. & Ryan, M. P. New developments concerning the proximal tubule in diabetic nephropathy: In vitro models and mechanisms. Nephrol. Dial. Transplant. 30, iv60–iv67. https://doi.org/10.1093/ndt/gfv264 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, W. et al. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1. Metabol. Clin. Exp. 129, 155155. https://doi.org/10.1016/j.metabol.2022.155155 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, L., Zou, Y. & Liu, F. Transforming growth factor-beta1 in diabetic kidney disease. Front. Cell Dev. Biol. 8, 187. https://doi.org/10.3389/fcell.2020.00187 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F. & Giordano, A. Role of p53 in the regulation of cellular senescence. Biomolecules https://doi.org/10.3390/biom10030420 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHugh, D. & Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77. https://doi.org/10.1083/jcb.201708092 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaughan, D. E., Rai, R., Khan, S. S., Eren, M. & Ghosh, A. K. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler. Thromb. Vasc. Biol. 37, 1446–1452. https://doi.org/10.1161/atvbaha.117.309451 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adnot, S., Breau, M. & Houssaini, A. PAI-1: A new target for controlling lung-cell senescence and fibrosis?. Am. J. Respir. Cell Mol. Biol. 62, 271–272. https://doi.org/10.1165/rcmb.2019-0341ED (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kortlever, R. M., Nijwening, J. H. & Bernards, R. Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity. J. Biol. Chem. 283, 24308–24313. https://doi.org/10.1074/jbc.M803341200 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boe, A. E. et al. Plasminogen activator inhibitor-1 antagonist TM5441 attenuates Nω-nitro-l-arginine methyl ester-induced hypertension and vascular senescence. Circulation 128, 2318–2324. https://doi.org/10.1161/circulationaha.113.003192 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Investig. 123, 966–972. https://doi.org/10.1172/jci64098 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Özcan, S. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8, 1316–1329. https://doi.org/10.18632/aging.100971 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Nogal Avila, M. et al. Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells. Int. J. Biochem. Cell Biol. https://doi.org/10.1016/j.biocel.2014.07.006 (2014).

    Article 

    Google Scholar
     

  • Chen, K. et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 9, 105. https://doi.org/10.1038/s41419-017-0127-z (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Investig. 124, 2333–2340. https://doi.org/10.1172/jci72271 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Wang, H.-L., Liu, T.-T. & Lan, H.-Y. TGF-beta as a master regulator of diabetic nephropathy. Int. J. Mol. Sci. 22, 7881 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tominaga, K. & Suzuki, H. I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20205002 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Bernhardi, R., Cornejo, F., Parada, G. E. & Eugenín, J. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front. Cell. Neurosci. 9, 426. https://doi.org/10.3389/fncel.2015.00426 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Delaney, K., Kasprzycka, P., Ciemerych, M. A. & Zimowska, M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol. Int. 41, 706–715. https://doi.org/10.1002/cbin.10725 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S., Jim, B. & Ziyadeh, F. N. Diabetic nephropathy and transforming growth factor-beta: Transforming our view of glomerulosclerosis and fibrosis build-up. Semin. Nephrol. 23, 532–543. https://doi.org/10.1053/s0270-9295(03)00132-3 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krag, S., Danielsen, C. C., Carmeliet, P., Nyengaard, J. & Wogensen, L. Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-beta1-induced kidney disease. Kidney Int. 68, 2651–2666. https://doi.org/10.1111/j.1523-1755.2005.00737.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gruden, G. et al. PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 43, 426–429. https://doi.org/10.2337/diab.43.3.426 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirano, T., Kashiwazaki, K., Moritomo, Y., Nagano, S. & Adachi, M. Albuminuria is directly associated with increased plasma PAI-1 and factor VII levels in NIDDM patients. Diabetes Res. Clin. Pract. 36, 11–18. https://doi.org/10.1016/s0168-8227(97)01384-3 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, B. Y. et al. Novel plasminogen activator inhibitor-1 inhibitors prevent diabetic kidney injury in a mouse model. PLoS ONE 11, e0157012. https://doi.org/10.1371/journal.pone.0157012 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholas, S. B. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 67, 1297–1307. https://doi.org/10.1111/j.1523-1755.2005.00207.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, C., Zhang, J., Noble, N. A., Peng, X. R. & Huang, Y. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease. Am. J. Physiol. Renal Physiol. 311, F852-f863. https://doi.org/10.1152/ajprenal.00564.2015 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884. https://doi.org/10.1038/ncb1448 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rana, T. et al. PAI-1 regulation of TGF-β1-induced alveolar type II Cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 62, 319–330. https://doi.org/10.1165/rcmb.2019-0071OC (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boe, A. E. et al. Nitric oxide prevents alveolar senescence and emphysema in a mouse model. PLoS ONE 10, e0116504. https://doi.org/10.1371/journal.pone.0116504 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, I. et al. Low dose chronic angiotensin II induces selective senescence of kidney endothelial cells. Front. Cell Dev. Biol. 9, 782841. https://doi.org/10.3389/fcell.2021.782841 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazirpanah, N., Radstake, T. R. & Broen, J. C. Inflamm-ageing and senescence in gout: The tale of an old king’s disease. Curr. Aging Sci. 8, 186–201. https://doi.org/10.2174/1874609808666150727112434 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat. Med. 27, 1941–1953. https://doi.org/10.1038/s41591-021-01501-8 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: