Monday, October 2, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach – npj Aging


  • Knight, J. S. et al. The intersection of COVID-19 and autoimmunity. J. Clin. Invest. 131, e154886 (2021).

  • Galeotti, C. & Bayry, J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol. 16, 413–414 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merad, M., Blish, C. A., Sallusto, F. & Iwasaki, A. The immunology and immunopathology of COVID-19. Science 375, 1122–1127 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregorova, M. et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. Elife 9, 1–13 (2020).

    Article 

    Google Scholar
     

  • Karami Fath, M. et al. SARS-CoV-2 proteome harbors peptides which are able to trigger autoimmunity responses: implications for infection, vaccination, and population coverage. Front. Immunol. 12, 3174 (2021).

    Article 

    Google Scholar
     

  • Vojdani, A., Vojdani, E. & Kharrazian, D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front. Immunol. 11, 617089 (2021).

  • Vojdani, A. & Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 217, 108480 (2020).

  • Nunez-Castilla, J. et al. Potential autoimmunity resulting from molecular mimicry between SARS-CoV-2 spike and human proteins. Viruses 14, 1415 (2022).

  • Aschman, T. et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol. 78, 948–960 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc. Neurol. 5, 279–284 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moll, G. et al. MSC therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front. Immunol. 11, 1091 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libby, P. & Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 41, 3038–3044 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rojas, M. et al. Autoimmunity is a hallmark of post-COVID syndrome. J. Transl. Med. 20, 1–5 (2022).

    Article 

    Google Scholar
     

  • Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38, 101019 (2021).

  • Spudich, S. & Nath, A. Nervous system consequences of COVID-19. Science. 375, 267–269 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. https://doi.org/10.1038/s41591-022-02001-z (2022).

  • Mehandru, S. & Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 2022 232 23, 194–202 (2022).

    CAS 

    Google Scholar
     

  • Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).

  • Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fagyas, M. et al. The majority of severe COVID-19 patients develop anti-cardiac autoantibodies. GeroScience https://doi.org/10.1007/S11357-022-00649-6 (2022).

  • Zuo, Y. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 12, 3876 (2020).

    Article 

    Google Scholar
     

  • Zuniga, M. et al. Autoimmunity to the lung protective phospholipid-binding protein annexin A2 predicts mortality among hospitalized COVID-19 patients. medRxiv https://doi.org/10.1101/2020.12.28.20248807 (2021).

  • ClinicalTrials.gov. Losartan for Patients With COVID-19 Requiring Hospitalization. https://classic.clinicaltrials.gov/ct2/show/NCT04311177 (2021).

  • Cavalli, E. et al. Entangling COVID-19 associated thrombosis into a secondary antiphospholipid antibody syndrome: Diagnostic and therapeutic perspectives (Review). Int. J. Mol. Med. 46, 903–912 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dotan, A. et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 20, 102792 (2021).

  • Trahtemberg, U. et al. Anticardiolipin and other antiphospholipid antibodies in critically ill COVID-19 positive and negative patients. Ann. Rheum. Dis. 80, 1236–1240 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juanes-Velasco, P. et al. SARS-CoV-2 infection triggers auto-immune response in ARDS. Front. Immunol. 13, 1–13 (2022).

    Article 

    Google Scholar
     

  • Chang, S. et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 12, 5417 (2021).

  • Woodruff, M. C. et al. Relaxed peripheral tolerance drives broad de novo autoreactivity in severe COVID-19. medRxiv https://doi.org/10.1101/2020.10.21.20216192 (2021).

  • Taeschler, P. et al. Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy 77, 2415–2430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baiocchi, G. C. et al. Autoantibodies linked to autoimmune diseases associate with COVID-19 outcomes. medRxiv https://doi.org/10.1101/2022.02.17.22271057 (2022).

  • Liu, Y. et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J. 55, 2001112 (2020).

  • Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 26, 1205–1211 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Team, F. Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis. Lancet 399, 1469–1488 (2022).

    Article 

    Google Scholar
     

  • Ma, S., Wang, C., Mao, X. & Hao, Y. R Cells dysfunction associated with aging and autoimmune disease. Front. Immunol. 10, 318 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalan, P., Berg, A., van den, Kroesen, B.-J., Brouwer, L. & Boots, A. Rheumatoid arthritis, immunosenescence and the hallmarks of aging. Curr. Aging Sci. 8, 131 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Cytoplasmic DNA sensing by KU complex in aged CD4+ T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity 54, 632–647.e9 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbé-Tuana, F., Funchal, G., Schmitz, C. R. R., Maurmann, R. M. & Bauer, M. E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 42, 545–557 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arvey, A. et al. Age-associated changes in the circulating human antibody repertoire are upregulated in autoimmunity. Immun. Ageing 17, 1–16 (2020).

    Article 

    Google Scholar
     

  • Andrzejewska, A. et al. Multi-parameter analysis of biobanked human bone marrow stromal cells shows little influence for donor age and mild comorbidities on phenotypic and functional properties. Front. Immunol. 10, 2474 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shome, M. et al. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 39, 110873 (2022).

  • Nagele, E. P. et al. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One 8, e60726 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabral-Marques, O. et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat. Commun. 13, 1220 https://doi.org/10.1038/s41467-022-28905-5.

  • Baiocchi, G. C. et al. Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity. J. Med. Virol. 95, e28538 (2023).

  • Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nat. Methods 14, 641–642 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liaw, A. & Wiener, M. Classification and Regression by randomForest. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (2002).

  • Huang, S. et al. Applications of Support Vector Machine (SVM) learning in cancer genomics. Cancer Genom. Proteom. 15, 41 LP–41 51 (2018).


    Google Scholar
     

  • Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res. Rev. 65, 101205 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manry, J. et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. USA. 119, e2200413119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).

  • Zhang, Q. et al. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastard, P. et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci. Immunol. https://doi.org/10.1126/SCIIMMUNOL.ABP8966 (2022).

  • Cabral-Marques, O. & Riemekasten, G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat. Rev. Rheumatol. 13, 648–656 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral-Marques, O. et al. GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat. Commun. 9, 1–14 (2018).

    Article 

    Google Scholar
     

  • Bertin, D. et al. Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci. Rep. 12, 12523 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manoussakis, M. N. et al. High prevalence of anti-cardiolipin and other autoantibodies in a healthy elderly population. Clin. Exp. Immunol. 69, 557–565 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Njemini, R. et al. The prevalence of autoantibodies in an elderly sub-Saharan African population. Clin. Exp. Immunol. 127, 99–106 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beer, J. et al. Impaired immune response drives age-dependent severity of COVID-19. J. Exp. Med. 219, e20220621 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neville, C. et al. Thromboembolic risk in patients with high titre anticardiolipin and multiple antiphospholipid antibodies. Thromb. Haemost. 90, 108–115 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert, M. P. & Gernsheimer, T. B. Clinical updates in adult immune thrombocytopenia. Blood 129, 2829–2835 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsoularis, I. et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ https://doi.org/10.1136/bmj-2021-069590 (2022).

  • Quezada-Feijoo, M. et al. Elderly population with COVID-19 and the accuracy of clinical scales and D-dimer for pulmonary embolism: the OCTA-COVID study. J. Clin. Med. 10, 5433 (2021).

  • Greinacher, A. et al. Anti-platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood 138, 1269–1277 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, T. et al. Detection of anti-GPIbα autoantibodies in a case of immune thrombocytopenia following COVID-19 vaccination. Thromb. Res. 209, 80–83 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. Anti-PF4 antibodies associated with disease severity in COVID-19. Proc. Natl. Acad. Sci. 119, e2213361119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amendt, T. et al. Autoreactive antibodies control blood glucose by regulating insulin homeostasis. Proc. Natl. Acad. Sci. 119, e2115695119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, H. U., Binder, C. J. & Kaveri, S. Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol. 30, 43–51 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, M. et al. Anti-cytokine autoantibodies are ubiquitous in healthy individuals. FEBS Lett. 581, 2017–2021 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleg, J. L. & Strait, J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail. Rev. 17, 545–554 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, E. T., Guppy, M., Straus, S. E., Bell, K. J. L. & Glasziou, P. Rate of normal lung function decline in ageing adults: a systematic review of prospective cohort studies. BMJ Open 9, e028150 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Almeida Chuffa, L. G. et al. Aging whole blood transcriptome reveals candidate genes for SARS-CoV-2-related vascular and immune alterations. J. Mol. Med. 100, 285–301 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Merad, M. & Martin, J. C. Author correction: pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 448 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Páez-Franco, J. C. et al. Metabolomics analysis identifies glutamic acid and cystine imbalances in COVID-19 patients without comorbid conditions. Implications on redox homeostasis and COVID-19 pathophysiology. PLoS One 17, 1–17 (2022).

    Article 

    Google Scholar
     

  • Ludwig, R. J. et al. Mechanisms of Autoantibody-Induced Pathology. Front. Immunol. 8, 603 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacheco, Y. et al. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J. Transl. Med. 15, 239 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grolleau-Julius, A., Ray, D. & Yung, R. L. The role of epigenetics in aging and autoimmunity. Clin. Rev. Allergy Immunol. 39, 42–50 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, X. et al. Accelerated biological aging in COVID-19 patients. Nat. Commun. 13, 2135 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farris, A. D. & Guthridge, J. M. Overlapping B cell pathways in severe COVID-19 and lupus. Nat. Immunol. 21, 1478–1480 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tripathi, U. et al. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany. NY). 13, 21838–21854 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartleson, J. M. et al. SARS-CoV-2, COVID-19 and the aging immune system. Nat. Aging 1, 769–782 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collier, D. A. et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 596, 417–422 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, S. M., Guo, G., Gibson, D. S., Bjourson, A. J. & Rai, T. S. Role of senescence and aging in SARS-CoV-2 infection and COVID-19 disease. Cells 10, 3367 (2021).

  • Akbar, A. N. & Gilroy, D. W. Aging immunity may exacerbate COVID-19. Science 369, 256–257 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, Y. et al. Aging-related cell type-specific pathophysiologic immune responses that exacerbate disease severity in aged COVID-19 patients. Aging Cell 21, e13544 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakravarty, K. K., Gray, R. E. S., Webley, M., Byron, M. A. & Wozniak, J. Prevalence of anticardiolipin antibodies in the elderly British population. Postgrad. Med. J. 67, 358–361 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borghi, M. O. et al. Anti-phospholipid antibodies in COVID-19 are different from those detectable in the anti-phospholipid syndrome. Front. Immunol. 11, 584241 (2020).

  • Silverberg, J. I. et al. Association of varying clinical manifestations and positive anti-SARS-CoV-2 IgG antibodies: a cross-sectional observational study. J. Allergy Clin. Immunol. Pract. 9, 3331–3338.e2 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zyskind, I. et al. SARS-CoV-2 seroprevalence and symptom onset in culturally linked orthodox Jewish communities across multiple regions in the United States. JAMA Netw. Open 4, e212816–e212816 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. COVID-19 Clinical Management: Living Guidance (World Health Organization, 2021).

  • Khamsi, R. Rogue antibodies could be driving severe COVID-19. Nature 590, 29–31 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ehrenfeld, M. et al. Covid-19 and autoimmunity. Autoimmun. Rev. 19, 102597 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baiocchi, G. C. et al. Autoantibodies linked to autoimmune diseases associate with COVID-19 outcomes. medRxiv https://doi.org/10.1101/2022.02.17.22271057 (2022).

  • R Core Team (2018). R: A Language and Environment for Statistical Computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (2015).

  • CRAN. The R Project for Statistical Computing. https://www.r-project.org/(2023).

  • RStudio. Open Source & Professional Software for Data Science Teams. https://www.rstudio.com/. (2021).

  • Wickham, H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://ggplot2.tidyverse.org/ (2023).

  • Schneider, A., Hommel, G. & Blettner, M. Linear regression analysis. Dtsch. Arztebl. Int. https://doi.org/10.3238/arztebl.2010.0776 (2010).

  • Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://link.springer.com/book/10.1007/978-0-387-98141-3 (2016).

  • A, K. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. https://rdrr.io/cran/rstatix/ (2021).

  • Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008 263 26, 303–304 (2008).


    Google Scholar
     

  • Lever, J., Krzywinski, M. & Altman, N. Points of significance: principal component analysis. Nature Methods 14, 641–642 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sotzny, F. et al. Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity. Front. Immunol. 13, 19 (2022).

    Article 

    Google Scholar
     

  • Braeken, J. & Van Assen, M. A. L. M. An empirical Kaiser criterion. Psychol. Methods 22, 450–466 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://CRAN.R-project.org/package=factoextra (2020).

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schimke, L. F. et al. Severe COVID-19 shares a common neutrophil activation signature with other acute inflammatory states. Cells 11, 847 (2022).

  • Ricciardi, C. et al. Linear discriminant analysis and principal component analysis to predict coronary artery disease. Health Inform. J. 26, 2181–2192 (2020).

    Article 

    Google Scholar
     

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. Ripley (Springer, 2002).

  • Sachs, M. C. plotROC: A tool for plotting ROC curves. J. Stat. Softw. 79, 2 (2017).

  • Sperandei, S. Understanding logistic regression analysis. Biochem. Med. https://doi.org/10.11613/BM.2014.003 (2014).

  • Chongsuvivatwong, V. epiDisplay: Epidemiological Data Display Package. https://rdrr.io/cran/epiDisplay/ (2022).

  • Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based. Ment. Health 22, 153–160 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Karatzoglou, A., Smola, A. & Hornik, K. Kernel-Based Machine Learning Lab [R package kernlab version 0.9-31]. https://rdrr.io/cran/kernlab/ (2022).

  • Karatzoglou, A., Hornik, K., Smola, A. & Zeileis, A. kernlab—An S4 package for Kernel methods in R. J. Stat. Softw. 11, 1–20 (2004).

    Article 

    Google Scholar
     

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://rdrr.io/rforge/e1071/ (2021).



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: