Sunday, February 25, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Sex differences in colonic gene expression and fecal microbiota composition in a mouse model of obesity-associated colorectal cancer – Scientific Reports


  • Tarasiuk, A., Mosińska, P. & Fichna, J. The mechanisms linking obesity to colon cancer: An overview. Obes. Res. Clin. Pract. 12, 251–259. https://doi.org/10.1016/j.orcp.2018.01.005 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Song, R. et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research Cancer Prevention Recommendations and Colorectal Cancer Survival. Cancer Epidemiol. Biomarkers Prev. 30, 1816–1825. https://doi.org/10.1158/1055-9965.Epi-21-0120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferlay, J. E. M., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., & Bray, F. Lyon, France: International Agency for Research on Cancer, 2020).

  • Zheng, D. et al. Sexual dimorphism in the incidence of human cancers. BMC Cancer 19, 684. https://doi.org/10.1186/s12885-019-5902-z (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, C., DiLeo, A., Niv, Y. & Gustafsson, J. -Å. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett. 372, 48–56. https://doi.org/10.1016/j.canlet.2015.12.009 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bardou, M., Barkun, A. N. & Martel, M. Obesity and colorectal cancer. Gut 62, 933–947. https://doi.org/10.1136/gutjnl-2013-304701 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hendifar, A. et al. Gender disparities in metastatic colorectal cancer survival. Clin. Cancer Res. 15, 6391–6397. https://doi.org/10.1158/1078-0432.Ccr-09-0877 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnegard, M. E., Whitten, L. A., Hunter, C. & Clayton, J. A. Sex as a biological variable: A 5-year progress report and call to action. J. Womens Health (Larchmt) 29, 858–864. https://doi.org/10.1089/jwh.2019.8247 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. E. et al. Sex- and gender-specific disparities in colorectal cancer risk. World J. Gastroenterol. 21, 5167–5175. https://doi.org/10.3748/wjg.v21.i17.5167 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varlamov, O., Bethea, C. L. & Roberts, C. T., Jr. Sex-specific differences in lipid and glucose metabolism. Front. Endocrinol. (Lausanne) 5, 241. https://doi.org/10.3389/fendo.2014.00241 (2014).

  • Oh, T. H. et al. Visceral obesity as a risk factor for colorectal neoplasm. J. Gastroenterol. Hepatol. 23, 411–417. https://doi.org/10.1111/j.1440-1746.2007.05125.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Yamaji, T. et al. Visceral fat volume and the prevalence of colorectal adenoma. Am. J. Epidemiol. 170, 1502–1511. https://doi.org/10.1093/aje/kwp311 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Chlebowski, R. T. et al. Estrogen plus progestin and colorectal cancer in postmenopausal women. N. Engl. J. Med. 350, 991–1004. https://doi.org/10.1056/NEJMoa032071 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Simon, M. S. et al. Estrogen plus progestin and colorectal cancer incidence and mortality. J. Clin. Oncol. 30, 3983–3990. https://doi.org/10.1200/jco.2012.42.7732 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, C. M. et al. A novel shift in estrogen receptor expression occurs as estradiol suppresses inflammation-associated colon tumor formation. Endocr. Relat. Cancer 20, 515–525. https://doi.org/10.1530/erc-12-0308 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, J. & Yu, J. The association of diet, gut microbiota and colorectal cancer: What we eat may imply what we get. Protein Cell 9, 474–487. https://doi.org/10.1007/s13238-018-0543-6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avgerinos, K. I., Spyrou, N., Mantzoros, C. S. & Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 92, 121–135. https://doi.org/10.1016/j.metabol.2018.11.001 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lopes-Ramos, C. M., Quackenbush, J. & DeMeo, D. L. Genome-wide sex and gender differences in cancer. Front. Oncol. 10, 597788. https://doi.org/10.3389/fonc.2020.597788 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, P., Xi, Y., Huang, Z. & Xu, P. Linking obesity with colorectal cancer: Epidemiology and mechanistic insights. Cancers (Basel) 12, 1. https://doi.org/10.3390/cancers12061408 (2020).

  • Muscogiuri, G. et al. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 9, 10–19. https://doi.org/10.1038/s41367-019-0011-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, C. D. The gut microbiome and its role in obesity. Nutr. Today 51, 167–174. https://doi.org/10.1097/nt.0000000000000167 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allegra, A., Musolino, C., Tonacci, A., Pioggia, G. & Gangemi, S. Interactions between the MicroRNAs and microbiota in cancer development: Roles and therapeutic opportunities. Cancers 12, 1. https://doi.org/10.3390/cancers12040805 (2020).

    Article 

    Google Scholar
     

  • Kim, N. et al. Crosstalk between mucosal microbiota, host gene expression, and sociomedical factors in the progression of colorectal cancer. Sci. Rep. 12, 13447. https://doi.org/10.1038/s41598-022-17823-7 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campisciano, G. et al. The obesity-related gut bacterial and viral dysbiosis can impact the risk of colon cancer development. Microorganisms 8, 1. https://doi.org/10.3390/microorganisms8030431 (2020).

    Article 

    Google Scholar
     

  • Kang, X. et al. Altered gut microbiota of obesity subjects promotes colorectal carcinogenesis in mice. EBioMedicine 93, 104670. https://doi.org/10.1016/j.ebiom.2023.104670 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha, T. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 10, 358–366. https://doi.org/10.1080/19490976.2018.1528822 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. M., Kim, N., Yoon, H., Nam, R. H. & Lee, D. H. Microbial changes and host response in F344 rat colon depending on sex and age following a high-fat diet. Front. Microbiol. 9, 2236. https://doi.org/10.3389/fmicb.2018.02236 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500. https://doi.org/10.1038/ncomms5500 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Song, C. H. et al. Changes in microbial community composition related to sex and colon cancer by Nrf2 knockout. Front. Cell Infect. Microbiol. 11, 636808. https://doi.org/10.3389/fcimb.2021.636808 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fåk, F. et al. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain Fatty Acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One 10, e0127252. https://doi.org/10.1371/journal.pone.0127252 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, K.-P. et al. Sex differences in response to short-term high fat diet in mice. Physiol. Behav. 221, 112894. https://doi.org/10.1016/j.physbeh.2020.112894 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. & Giovannucci, E. L. Sex differences in the association of obesity and colorectal cancer risk. Cancer Causes Control 28, 1–4. https://doi.org/10.1007/s10552-016-0831-5 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Colditz, G. A. & Peterson, L. L. Obesity and cancer: Evidence, impact, and future directions. Clin. Chem. 64, 154–162. https://doi.org/10.1373/clinchem.2017.277376 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729. https://doi.org/10.1126/science.1069094 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Bu, X., Li, L., Li, N., Tian, X. & Huang, P. Suppression of mucin 2 enhances the proliferation and invasion of LS174T human colorectal cancer cells. Cell Biol. Int. 35, 1121–1129. https://doi.org/10.1042/cbi20100876 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512. https://doi.org/10.1038/nature13398 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. et al. Gut microbiota shape the inflammatory response in mice with an epithelial defect. Gut Microbes 13, 1–18. https://doi.org/10.1080/19490976.2021.1887720 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, H., Lee, I. S. & Choue, R. Obesity, inflammation and diet. Pediatr. Gastroenterol. Hepatol. Nutr. 16, 143–152. https://doi.org/10.5223/pghn.2013.16.3.143 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 13, 851–863. https://doi.org/10.5114/aoms.2016.58928 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mager, L. F., Wasmer, M. H., Rau, T. T. & Krebs, P. Cytokine-Induced modulation of colorectal cancer. Front. Oncol. 6, 96. https://doi.org/10.3389/fonc.2016.00096 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masoud, G. N. & Li, W. HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378–389. https://doi.org/10.1016/j.apsb.2015.05.007 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, N., Fu, L., Bu, Y., Yao, Y. & Wang, Y. Downregulated expression of miR-223 promotes Toll-like receptor-activated inflammatory responses in macrophages by targeting RhoB. Mol. Immunol. 91, 42–48. https://doi.org/10.1016/j.molimm.2017.08.026 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. RhoB affects colitis through modulating cell signaling and intestinal microbiome. Microbiome 10, 149. https://doi.org/10.1186/s40168-022-01347-3 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, M. P., Rai, S., Singh, N. K. & Srivastava, S. Transcriptomic landscape of early age onset of colorectal cancer identifies novel genes and pathways in Indian CRC patients. Sci. Rep. 11, 11765. https://doi.org/10.1038/s41598-021-91154-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Q. et al. MAPK6-AKT signaling promotes tumor growth and resistance to mTOR kinase blockade. Sci. Adv. 7, eabi6439. https://doi.org/10.1126/sciadv.abi6439 (2021).

  • Yang, Y. C. et al. Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90-EGFR association. Oncogene 35, 3387–3398. https://doi.org/10.1038/onc.2015.397 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Q. et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. U S A 108, 4129–4134. https://doi.org/10.1073/pnas.1014769108 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, A. et al. Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. Int. J. Cancer 144, 3086–3098. https://doi.org/10.1002/ijc.32037 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, Q. et al. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncol. Lett. 18, 4834–4844. https://doi.org/10.3892/ol.2019.10841 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zackular, J. P., Rogers, M. A. & Ruffin, M. T. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7, 1112–1121. https://doi.org/10.1158/1940-6207.Capr-14-0129 (2014).

    Article 

    Google Scholar
     

  • Yang, J. et al. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med. 51, 1–15. https://doi.org/10.1038/s12276-019-0313-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, W. L. et al. Anti-inflammatory effect of luteolin is related to the changes in the gut microbiota and contributes to preventing the progression from simple steatosis to nonalcoholic steatohepatitis. Bioorg. Chem. 112, 104966. https://doi.org/10.1016/j.bioorg.2021.104966 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota. Int. J. Biol. Macromol. 213, 234–246. https://doi.org/10.1016/j.ijbiomac.2022.05.130 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 15, 185–203. https://doi.org/10.1038/nrd.2015.1 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zeng, H., Ishaq, S. L., Liu, Z. & Bukowski, M. R. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet. J. Nutr. Biochem. 54, 18–27. https://doi.org/10.1016/j.jnutbio.2017.11.001 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547. https://doi.org/10.1038/nature09646 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, Y., Nyman, M. & Fåk, F. Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol. Nutr. Food Res. 59, 2066–2076. https://doi.org/10.1002/mnfr.201500187 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jones-Hall, Y. L., Kozik, A. & Nakatsu, C. Ablation of tumor necrosis factor is associated with decreased inflammation and alterations of the microbiota in a mouse model of inflammatory bowel disease. PLoS One 10, e0119441. https://doi.org/10.1371/journal.pone.0119441 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, G. et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS One 9, e94699. https://doi.org/10.1371/journal.pone.0094699 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Diet- and genetically-induced obesity produces alterations in the microbiome, inflammation and Wnt pathway in the intestine of Apc(+/1638N) mice: Comparisons and contrasts. J. Cancer 7, 1780–1790. https://doi.org/10.7150/jca.15792 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujisawa, T. et al. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 57, 1531–1538. https://doi.org/10.1136/gut.2008.159293 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Teraoka, N. et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-Ay mice. Int. J. Cancer 129, 528–535. https://doi.org/10.1002/ijc.25711 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Suleiman, J. B., Mohamed, M. & Bakar, A. B. A. A systematic review on different models of inducing obesity in animals: Advantages and limitations. J. Adv. Vet. Anim. Res. 7, 103–114. https://doi.org/10.5455/javar.2020.g399 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, H.-N., Yum, H.-W. & Surh, Y.-J. in Cancer Prevention: Dietary Factors and Pharmacology (eds Ann M. Bode & Zigang Dong) 155–172 (Springer New York, 2014).

  • Park, S. Y., Kim, J. S., Seo, Y. R. & Sung, M. K. Effects of diet-induced obesity on colitis-associated colon tumor formation in A/J mice. Int. J. Obes. (Lond) 36, 273–280. https://doi.org/10.1038/ijo.2011.83 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. et al. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 42, D199-205. https://doi.org/10.1093/nar/gkt1076 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Genome-wide analysis of gene expression provides new insights into cold responses in Thellungiella salsuginea. Front. Plant Sci. 8, 713. https://doi.org/10.3389/fpls.2017.00713 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, G. C., Porras, P., Aranda, B., Hermjakob, H. & Orchard, S. E. Analyzing protein-protein interaction networks. J. Proteome Res. 11, 2014–2031. https://doi.org/10.1021/pr201211w (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Naorem, L. D., Muthaiyan, M. & Venkatesan, A. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer. J. Cell Biochem. 120, 6154–6167. https://doi.org/10.1002/jcb.27903 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-s4-s11 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles