Friday, December 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Signaling pathways and targeted therapies for psoriasis – Signal Transduction and Targeted Therapy


  • Icen, M. et al. Trends in incidence of adult-onset psoriasis over three decades: a population-based study. J. Am. Acad. Dermatol. 60, 394–401 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damiani, G. et al. The global, regional, and national burden of psoriasis: results and insights from the global burden of disease 2019 study. Front. Med. 8, 743180 (2021).

    Article 

    Google Scholar
     

  • Parisi, R. et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ 369, m1590 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, N. et al. Psoriasis: an epidemiological evaluation of disease burden in 590 patients. J. Eur. Acad. Dermatol. Venereol. 24, 1075–1082 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villacorta, R. et al. A multinational assessment of work-related productivity loss and indirect costs from a survey of patients with psoriasis. Br. J. Dermatol. 183, 548–558 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, F. et al. Global burden and cross-country inequalities in autoimmune diseases from 1990 to 2019. Autoimmun. Rev. 22, 103326 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H. M., Xu, J. M. & Jin, H. Z. Characteristics and burdens of disease in patients from beijing with generalized pustular psoriasis and palmoplantar pustulosis: multicenter retrospective cohort study using a regional database. Am. J. Clin. Dermatol. https://doi.org/10.1007/s40257-023-00807-2 (2023).

  • Pilon, D. et al. The economic burden of psoriasis with high comorbidity among privately insured patients in the United States. J. Med Econ. 22, 196–203 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, S., Taylor, C., Kornmehl, H. & Armstrong, A. W. Psoriasis and suicidality: a systematic review and meta-analysis. J. Am. Acad. Dermatol. 77, 425–440.e422 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Matterne, U., Baumeister, S. E. & Apfelbacher, C. J. Suicidality and risk of suicidality in psoriasis: a critical appraisal of two systematic reviews and meta-analyses. Br. J. Dermatol. 181, 717–721 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong, A. W. & Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323, 1945–1960 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E. & Barker, J. Psoriasis. Lancet 397, 1301–1315 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patrick, M. T. et al. Shared genetic risk factors and causal association between psoriasis and coronary artery disease. Nat. Commun. 13, 6565 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veale, D. J. & Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 391, 2273–2284 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, D., Afifi, L., Jeon, C., Cordoro, K. M. & Liao, W. A cross-sectional study of psoriasis triggers among different ethno-racial groups. J. Am. Acad. Dermatol. 77, 756–758.e751 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twelves, S. et al. Clinical and genetic differences between pustular psoriasis subtypes. J. Allergy Clin. Immunol. 143, 1021–1026 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FitzGerald, O. et al. Psoriatic arthritis. Nat. Rev. Dis. Prim. 7, 59 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chalmers, R., O’Sullivan, T., Owen, C. M. & Griffiths, C. E. WITHDRAWN: interventions for guttate psoriasis. Cochrane Database Syst. Rev. 4, Cd001213 (2019).

    PubMed 

    Google Scholar
     

  • Carrasquillo, O. Y. et al. Treatment of erythrodermic psoriasis with biologics: a systematic review. J. Am. Acad. Dermatol. 83, 151–158 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmets, C. A. et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with awareness and attention to comorbidities. J. Am. Acad. Dermatol. 80, 1073–1113 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kaushik, S. B. & Lebwohl, M. G. Psoriasis: which therapy for which patient: psoriasis comorbidities and preferred systemic agents. J. Am. Acad. Dermatol. 80, 27–40 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Korman, N. J. Management of psoriasis as a systemic disease: what is the evidence? Br. J. Dermatol. 182, 840–848 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, W. B., Jerome, D. & Yeung, J. Diagnosis and management of psoriasis. Can. Fam. Phys. 63, 278–285 (2017).


    Google Scholar
     

  • Boehncke, W. H. & Schön, M. P. Psoriasis. Lancet 386, 983–994 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bronckers, I. M., Paller, A. S., van Geel, M. J., van de Kerkhof, P. C. & Seyger, M. M. Psoriasis in children and adolescents: diagnosis, management and comorbidities. Paediatr. Drugs 17, 373–384 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Kerkhof, P. C. From empirical to pathogenesis-based treatments for psoriasis. J. Invest. Dermatol. 142, 1778–1785 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rendon, A. & Schäkel, K. Psoriasis pathogenesis and treatment. Int J. Mol. Sci. 20, 1475 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raychaudhuri, S. P., Wilken, R., Sukhov, A. C., Raychaudhuri, S. K. & Maverakis, E. Management of psoriatic arthritis: early diagnosis, monitoring of disease severity and cutting edge therapies. J. Autoimmun. 76, 21–37 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Coates, L. C. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): updated treatment recommendations for psoriatic arthritis 2021. Nat. Rev. Rheumatol. 18, 465–479 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoreschi, K., Balato, A., Enerbäck, C. & Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397, 754–766 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, R., Theiss, A. L. & Venuprasad, K. RORγt protein modifications and IL-17-mediated inflammation. Trends Immunol. 42, 1037–1050 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conrad, C. & Gilliet, M. Psoriasis: from pathogenesis to targeted therapies. Clin. Rev. Allergy Immunol. 54, 102–113 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y., Chang, C. & Lu, Q. The inflammatory response in psoriasis: a comprehensive review. Clin. Rev. Allergy Immunol. 50, 377–389 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vičić, M., Kaštelan, M., Brajac, I., Sotošek, V. & Massari, L. P. Current concepts of psoriasis immunopathogenesis. Int J. Mol. Sci. 22, 11574 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandra, A., Ray, A., Senapati, S. & Chatterjee, R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol. Immunol. 64, 313–323 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trowbridge, R. M. & Pittelkow, M. R. Epigenetics in the pathogenesis and pathophysiology of psoriasis vulgaris. J. Drugs Dermatol 13, 111–118 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Blunder, S., Pavel, P., Minzaghi, D. & Dubrac, S. PPARdelta in affected atopic dermatitis and psoriasis: a possible role in metabolic reprograming. Int J. Mol. Sci. 22, 7354 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian, N., Shi, L. Q., Hao, Z. M. & Chen, M. Research progress and perspective in metabolism and metabolomics of psoriasis. Chin. Med. J. 133, 2976–2986 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, B., Zhang, H., Wu, Y. & Shen, Y. Single-cell immune ecosystem and metabolism reprogramming imprinted by psoriasis niche. Ann. Transl. Med. 10, 837 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41, 199–204 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hüffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42, 996–999 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nair, R. P. et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J. Invest. Dermatol. 128, 1653–1661 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langley, R. G. et al. Secukinumab in plaque psoriasis-results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Blauvelt, A. et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J. Am. Acad. Dermatol. 76, 405–417 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merola, J. F. et al. Bimekizumab in patients with active psoriatic arthritis and previous inadequate response or intolerance to tumour necrosis factor-α inhibitors: a randomised, double-blind, placebo-controlled, phase 3 trial (BE COMPLETE). Lancet 401, 38–48 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffiths, C. E. et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med. 362, 118–128 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duvallet, E., Semerano, L., Assier, E., Falgarone, G. & Boissier, M. C. Interleukin-23: a key cytokine in inflammatory diseases. Ann. Med. 43, 503–511 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yawalkar, N., Tscharner, G. G., Hunger, R. E. & Hassan, A. S. Increased expression of IL-12p70 and IL-23 by multiple dendritic cell and macrophage subsets in plaque psoriasis. J. Dermatol. Sci. 54, 99–105 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Sig. Transduct. Target Ther. 8, 235 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Yu, X., Ma, Y. & Hua, S. IL-23 and dendritic cells: what are the roles of their mutual attachment in immune response and immunotherapy? Cytokine 120, 78–84 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside. Front. Immunol. 11, 594735 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, C., Wu, L. & Li, X. IL-17 family: cytokines, receptors and signaling. Cytokine 64, 477–485 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johansen, C. et al. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br. J. Dermatol. 160, 319–324 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, A. et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J. Immunol. 190, 2252–2262 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, D. A. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17–26 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blauvelt, A. & Chiricozzi, A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin. Rev. Allergy Immunol. 55, 379–390 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17, 435–440 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bertelsen, T., Iversen, L. & Johansen, C. The human IL-17A/F heterodimer regulates psoriasis-associated genes through IκBζ. Exp. Dermatol. 27, 1048–1052 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGeachy, M. J., Cua, D. J. & Gaffen, S. L. The IL-17 family of cytokines in health and disease. Immunity 50, 892–906 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keijsers, R. R., Joosten, I., van Erp, P. E., Koenen, H. J. & van de Kerkhof, P. C. Cellular sources of IL-17 in psoriasis: a paradigm shift? Exp. Dermatol. 23, 799–803 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brembilla, N. C., Senra, L. & Boehncke, W. H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front. Immunol. 9, 1682 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knizkova, D. et al. CMTM4 is a subunit of the IL-17 receptor and mediates autoimmune pathology. Nat. Immunol. 23, 1644–1652 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furue, M., Furue, K., Tsuji, G. & Nakahara, T. Interleukin-17A and Keratinocytes in Psoriasis. Int J. Mol. Sci. 21, 1275 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, Y. H. et al. Galectin-8 is upregulated in keratinocytes by IL-17A and promotes proliferation by regulating mitosis in psoriasis. J. Invest. Dermatol. 141, 503–511.e509 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christmann, C. et al. Interleukin 17 promotes expression of alarmins S100A8 and S100A9 during the inflammatory response of keratinocytes. Front. Immunol. 11, 599947 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekman, A. K., Bivik Eding, C., Rundquist, I. & Enerbäck, C. IL-17 and IL-22 promote keratinocyte stemness in the germinative compartment in psoriasis. J. Invest. Dermatol. 139, 1564–1573.e1568 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Interleukin-17A drives IL-19 and IL-24 expression in skin stromal cells regulating keratinocyte proliferation. Front. Immunol. 12, 719562 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. A novel role of IL-17A in contributing to the impaired suppressive function of Tregs in psoriasis. J. Dermatol. Sci. 101, 84–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garzorz-Stark, N. & Eyerich, K. Psoriasis pathogenesis: keratinocytes are back in the spotlight. J. Invest. Dermatol. 139, 995–996 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez-Carrozzi, V. et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat. Immunol. 12, 1159–1166 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borowczyk, J. et al. IL-17E (IL-25) and IL-17A differentially affect the functions of human keratinocytes. J. Invest. Dermatol. 140, 1379–1389.e1372 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reich, K. et al. Successful treatment of moderate to severe plaque psoriasis with the PEGylated Fab’ certolizumab pegol: results of a phase II randomized, placebo-controlled trial with a re-treatment extension. Br. J. Dermatol. 167, 180–190 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGeough, M. D. et al. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J. Clin. Invest. 127, 4488–4497 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grine, L., Dejager, L., Libert, C. & Vandenbroucke, R. E. An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Rev. 26, 25–33 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, P. et al. The role of helper T cells in psoriasis. Front. Immunol. 12, 788940 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristensen, M. et al. Localization of tumour necrosis factor-alpha (TNF-alpha) and its receptors in normal and psoriatic skin: epidermal cells express the 55-kD but not the 75-kD TNF receptor. Clin. Exp. Immunol. 94, 354–362 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Psarras, A. et al. TNF-α regulates human plasmacytoid dendritic cells by suppressing IFN-α production and enhancing T cell activation. J. Immunol. 206, 785–796 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. J., Perez-Chada, L. M. & Merola, J. F. TNF inhibitor-induced psoriasis: proposed algorithm for treatment and management. J. Psoriasis Psoriatic Arthritis 4, 70–80 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schottelius, A. J. et al. Biology of tumor necrosis factor-alpha- implications for psoriasis. Exp. Dermatol. 13, 193–222 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiricozzi, A. et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Invest. Dermatol. 131, 677–687 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, R. K. et al. TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy. Sci. Immunol. 6, eabi8823 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richmond, J. M., Strassner, J. P., Essien, K. I. & Harris, J. E. T-cell positioning by chemokines in autoimmune skin diseases. Immunol. Rev. 289, 186–204 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meehan, E. V. & Wang, K. Interleukin-17 family cytokines in metabolic disorders and cancer. Genes 13, 1643 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. E., Houh, Y., Park, H. J. & Cho, D. Therapeutic effects of erythroid differentiation regulator 1 on imiquimod-induced psoriasis-like skin inflammation. Int J. Mol. Sci. 17, 244 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mabuchi, T. et al. CCR6 is required for epidermal trafficking of γδ-T cells in an IL-23-induced model of psoriasiform dermatitis. J. Invest. Dermatol. 133, 164–171 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409–426 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. P., Zhang, H. H., Foley, J. F., Hedrick, M. N. & Farber, J. M. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J. Immunol. 180, 214–221 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, J. W. et al. Keratinocyte transglutaminase 2 promotes CCR6(+) γδT-cell recruitment by upregulating CCL20 in psoriatic inflammation. Cell Death Dis. 11, 301 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harper, E. G. et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Invest. Dermatol. 129, 2175–2183 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy-Crispin, M. et al. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J. Invest. Dermatol. 132, 105–113 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furue, K. et al. Cyto/chemokine profile of in vitro scratched keratinocyte model: implications of significant upregulation of CCL20, CXCL8 and IL36G in Koebner phenomenon. J. Dermatol Sci. 94, 244–251 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, A. et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol. 140, 109–120 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neurath, M. F. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev. 55, 70–79 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blumberg, H. et al. IL-1RL2 and its ligands contribute to the cytokine network in psoriasis. J. Immunol. 185, 4354–4362 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sims, J. E. & Smith, D. E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, A. et al. IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J. Immunol. 186, 2613–2622 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Traks, T. et al. Polymorphisms in IL36G gene are associated with plaque psoriasis. BMC Med. Genet. 20, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, X. et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat. Commun. 6, 6793 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hébert, H. L. et al. Polymorphisms in IL-1B distinguish between psoriasis of early and late onset. J. Invest. Dermatol. 134, 1459–1462 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gresnigt, M. S. & van de Veerdonk, F. L. Biology of IL-36 cytokines and their role in disease. Semin. Immunol. 25, 458–465 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Towne, J. E. et al. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J. Biol. Chem. 286, 42594–42602 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, C. M. et al. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 14, 708–722 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clancy, D. M. et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 22, 2937–2950 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36γ induction in human epidermal keratinocytes. J. Immunol. 193, 5140–5148 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukaura, R. & Akiyama, M. Targeting IL-36 in inflammatory skin diseases. BioDrugs 37, 279–293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carrier, Y. et al. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J. Invest. Dermatol. 131, 2428–2437 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madonna, S., Girolomoni, G., Dinarello, C. A. & Albanesi, C. The significance of IL-36 hyperactivation and IL-36R targeting in psoriasis. Int J. Mol. Sci. 20, 3318 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, A. M. et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J. Immunol. 192, 6053–6061 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, X. et al. IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation. Nat. Immunol. 23, 1577–1587 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iznardo, H. & Puig, L. The interleukin-1 family cytokines in psoriasis: pathogenetic role and therapeutic perspectives. Expert Rev. Clin. Immunol. 17, 187–199 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y. et al. A critical role of the IL-1β-IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. J. Invest. Dermatol. 139, 146–156 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Negishi, H., Taniguchi, T. & Yanai, H. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb. Perspect. Biol. 10, a028423 (2018).

  • Mora-Arias, T. & Amezcua-Guerra, L. M. Type III interferons (Lambda Interferons) in rheumatic autoimmune diseases. Arch. Immunol. Ther. Exp. 68, 1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, H. et al. SCARB2/LIMP-2 regulates IFN production of plasmacytoid dendritic cells by mediating endosomal translocation of TLR9 and nuclear translocation of IRF7. J. Immunol. 194, 4737–4749 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. J. Type1 interferons potential initiating factors linking skin wounds with psoriasis pathogenesis. Front. Immunol. 10, 1440 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toussirot, E., Béreau, M., Bossert, M., Malkoun, I. & Lohse, A. Occurrence of psoriatic arthritis during interferon beta 1a treatment for multiple sclerosis. Case Rep. Rheumatol. 2014, 949317 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millán-Pascual, J., Turpín-Fenoll, L., Del Saz-Saucedo, P., Rueda-Medina, I. & Navarro-Muñoz, S. Psoriasis during natalizumab treatment for multiple sclerosis. J. Neurol. 259, 2758–2760 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Orzan, O. A. et al. An insight on the possible association between inflammatory bowel disease and biologic therapy with IL-17 inhibitors in psoriasis patients. Pharmaceutics 15, 2171 (2023).

  • Zhou, S. & Yao, Z. Roles of infection in psoriasis. Int J. Mol. Sci. 23, 6955 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson-Huang, L. M. et al. A single intradermal injection of IFN-γ induces an inflammatory state in both non-lesional psoriatic and healthy skin. J. Invest. Dermatol. 132, 1177–1187 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdallah, M. A., Abdel-Hamid, M. F., Kotb, A. M. & Mabrouk, E. A. Serum interferon-gamma is a psoriasis severity and prognostic marker. Cutis 84, 163–168 (2009).

    PubMed 

    Google Scholar
     

  • Albanesi, C., Madonna, S., Gisondi, P. & Girolomoni, G. The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front. Immunol. 9, 1549 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X., Chen, Y., Cui, L., Shi, Y. & Guo, C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 13, 81 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135–143 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. J. et al. Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-β Production by Epidermal Keratinocytes during Skin Injury. Immunity 45, 119–130 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmons, D. P. et al. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J. Immunol. 188, 3116–3126 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tohyama, M. et al. IFN-α enhances IL-22 receptor expression in keratinocytes: a possible role in the development of psoriasis. J. Invest. Dermatol. 132, 1933–1935 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgescu, S. R. et al. Advances in understanding the immunological pathways in psoriasis. Int J. Mol. Sci. 20, 739 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, H. A. Unraveling the pros and cons of interferon-gamma gene regulation. Immunity 24, 506–507 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziblat, A. et al. Interleukin (IL)-23 stimulates IFN-γ secretion by CD56(bright) natural killer cells and enhances IL-18-driven dendritic cells activation. Front. Immunol. 8, 1959 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kryczek, I. et al. Induction of IL-17 + T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J. Immunol. 181, 4733–4741 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabat, R. IL-10 family of cytokines. Cytokine Growth Factor Rev. 21, 315–324 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo, Y. H. et al. Serum IL-22 correlates with psoriatic severity and serum IL-6 correlates with susceptibility to phototherapy. J. Dermatol. Sci. 58, 225–227 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. The expression of interleukin-22 and S100A7, A8, A9 mRNA in patients with psoriasis vulgaris. J. Huazhong Univ. Sci. Technol. Med. Sci. 27, 605–607 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Caproni, M. et al. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J. Clin. Immunol. 29, 210–214 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meephansan, J., Ruchusatsawat, K., Sindhupak, W., Thorner, P. S. & Wongpiyabovorn, J. Effect of methotrexate on serum levels of IL-22 in patients with psoriasis. Eur. J. Dermatol. 21, 501–504 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, H. et al. Human Langerhans cells induce distinct IL-22-producing CD4 + T cells lacking IL-17 production. Proc. Natl Acad. Sci. USA 106, 21795–21800 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, J. Q. Targeting interleukin-22 in psoriasis. Inflammation 37, 94–99 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K., Chen, L., Zhu, C., Zhang, M. & Liang, C. Current knowledge of Th22 cell and IL-22 functions in infectious diseases. Pathogens 12, 176 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolk, K. et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J. Mol. Med. 87, 523–536 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saggini, A., Chimenti, S. & Chiricozzi, A. IL-6 as a druggable target in psoriasis: focus on pustular variants. J. Immunol. Res. 2014, 964069 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobolev, V. V., Denisova, E. V., Chebysheva, S. N., Geppe, N. A. & Korsunskaya, I. M. IL-6 gene expression as a marker of pathological state in psoriasis and psoriatic arthritis. Bull. Exp. Biol. Med. 173, 77–80 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujishima, S. et al. Involvement of IL-17F via the induction of IL-6 in psoriasis. Arch. Dermatol. Res. 302, 499–505 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blauvelt, A. IL-6 differs from TNF-α: unpredicted clinical effects caused by IL-6 blockade in psoriasis. J. Invest. Dermatol. 137, 541–542 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rose-John, S., Jenkins, B. J., Garbers, C., Moll, J. M. & Scheller, J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat. Rev. Immunol. 17, 1–16 (2023).


    Google Scholar
     

  • Camporeale, A. & Poli, V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front. Biosci. 17, 2306–2326 (2012).

    Article 

    Google Scholar
     

  • Bodian, M. et al. Fatal evolution of a huge right atrial free-floating thrombus. Clin. Case Rep. 1, 63–65 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritz, Y. et al. Induction of alternative proinflammatory cytokines accounts for sustained psoriasiform skin inflammation in IL-17C + IL-6KO mice. J. Invest. Dermatol. 137, 696–705 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Midde, H. S. et al. Interleukin-9 serves as a key link between systemic inflammation and angiogenesis in psoriasis. Clin. Exp. Dermatol. 46, 50–57 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlapbach, C. et al. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 6, 219ra218 (2014).

    Article 

    Google Scholar
     

  • Theoharides, T. C. et al. IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl Acad. Sci. USA 107, 4448–4453 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shakerian, L. et al. IL-33/ST2 axis in autoimmune disease. Cytokine 158, 156015 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. IL-33-mediated activation of mast cells is involved in the progression of imiquimod-induced psoriasis-like dermatitis. Cell Commun. Signal 21, 52 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Interleukin-33 alleviates psoriatic inflammation by suppressing the T helper type 17 immune response. Immunology 160, 382–392 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, K. et al. NF-κB1 Contributes to Imiquimod-Induced Psoriasis-Like Skin Inflammation by Inducing Vγ4(+)Vδ4(+)γδT17 Cells. J. Invest. Dermatol. 142, 1639–1649.e1635 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andres-Ejarque, R. et al. Enhanced NF-κB signaling in type-2 dendritic cells at baseline predicts non-response to adalimumab in psoriasis. Nat. Commun. 12, 4741 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. & Sun, S. C. NF-κB in inflammation and renal diseases. Cell Biosci. 5, 63 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-κB signaling in inflammation. Sig. Transduct. Target Ther. 2, 17023 (2017).

    Article 

    Google Scholar
     

  • Yu, H., Lin, L., Zhang, Z., Zhang, H. & Hu, H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target Ther. 5, 209 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldminz, A. M., Au, S. C., Kim, N., Gottlieb, A. B. & Lizzul, P. F. NF-κB: an essential transcription factor in psoriasis. J. Dermatol. Sci. 69, 89–94 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuart, P. E. et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat. Genet. 42, 1000–1004 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, F. R. & Warren, R. B. Psoriasis and susceptibility to other autoimmune diseases: an outline for the clinician. Expert Rev. Clin. Immunol. 9, 99–101 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorenz, V. N., Schön, M. P. & Seitz, C. S. c-Rel downregulation affects cell cycle progression of human keratinocytes. J. Invest. Dermatol 134, 415–422 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, T. et al. Treating psoriasis by targeting its susceptibility gene Rel. Clin. Immunol. 165, 47–54 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dainichi, T., Matsumoto, R., Mostafa, A. & Kabashima, K. Immune control by TRAF6-mediated pathways of epithelial cells in the EIME (epithelial immune microenvironment). Front. Immunol. 10, 1107 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, F. et al. TRAF6-dependent Act1 phosphorylation by the IκB kinase-related kinases suppresses interleukin-17-induced NF-κB activation. Mol. Cell Biol. 32, 3925–3937 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, M. et al. Essential role of CARD14 in murine experimental psoriasis. J. Immunol. 200, 71–81 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Nuffel, E. et al. CARD14-mediated activation of paracaspase MALT1 in keratinocytes: implications for psoriasis. J. Invest. Dermatol. 137, 569–575 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, C. T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Gain-of-function mutation of Card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity 49, 66–79.e65 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellett, M. et al. CARD14 gain-of-function mutation alone is sufficient to drive IL-23/IL-17-mediated psoriasiform skin inflammation in vivo. J. Invest. Dermatol. 138, 2010–2023 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y., Sarkar, M. K., Tsoi, L. C. & Gudjonsson, J. E. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol. 49, 1–8 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauro, C. et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J. Biol. Chem. 281, 18482–18488 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez, V. P., Gurevich, I. & Aneskievich, B. J. Emerging roles for TNIP1 in regulating post-receptor signaling. Cytokine Growth Factor Rev. 23, 109–118 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, G. et al. Gfi1 and Zc3h12c orchestrate a negative feedback loop that inhibits NF-kB activation during inflammation in macrophages. Mol. Immunol. 128, 219–226 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells. Biochem. J. 451, 55–60 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bousoik, E. & Montazeri Aliabadi, H. “Do We Know Jack” about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 8, 287 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winthrop, K. L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13, 234–243 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krueger, J. G., McInnes, I. B. & Blauvelt, A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J. Am. Acad. Dermatol. 86, 148–157 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damsky, W. & King, B. A. JAK inhibitors in dermatology: the promise of a new drug class. J. Am. Acad. Dermatol. 76, 736–744 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nada, H. R., El Sharkawy, D. A., Elmasry, M. F., Rashed, L. A. & Mamdouh, S. Expression of Janus Kinase 1 in vitiligo & psoriasis before and after narrow band UVB: a case-control study. Arch. Dermatol. Res. 310, 39–46 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishizaki, M. et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int. Immunol. 26, 257–267 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomar, Y., Gorantla, S. & Singhvi, G. Insight into the pivotal role of signaling pathways in psoriasis pathogenesis, potential therapeutic molecules and drug delivery approaches. Drug Discov. Today 28, 103465 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hald, A. et al. STAT1 expression and activation is increased in lesional psoriatic skin. Br. J. Dermatol. 168, 302–310 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sano, S. et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11, 43–49 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greb, J. E. et al. Psoriasis. Nat. Rev. Dis. Prim. 2, 16082 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, E. K. & Choi, E. J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396–405 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kyriakis, J. M. & Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol. Rev. 92, 689–737 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X. J. et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp. Mol. Pathol. 83, 413–418 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krajina, I., Stupin, A., Šola, M. & Mihalj, M. Oxidative stress induced by high salt diet-possible implications for development and clinical manifestation of cutaneous inflammation and endothelial dysfunction in Psoriasis vulgaris. Antioxidants 11, 1269 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasparakis, M., Haase, I. & Nestle, F. O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammouda, M. B., Ford, A. E., Liu, Y. & Zhang, J. Y. The JNK signaling pathway in inflammatory skin disorders and cancer. Cells 9, 857 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. IL-22 down-regulates Cx43 expression and decreases gap junctional intercellular communication by activating the JNK pathway in psoriasis. J. Invest. Dermatol. 139, 400–411 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., Wu, J., Ren, W., Yang, X. & Shen, Z. c-Jun N-terminal kinase (JNK)-phospho-c-JUN (ser63/73) pathway is essential for FOXP3 nuclear translocation in psoriasis. J. Dermatol. Sci. 69, 114–121 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afonina, I. S. et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 17, 914–927 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mose, M., Kang, Z., Raaby, L., Iversen, L. & Johansen, C. TNFα- and IL-17A-mediated S100A8 expression is regulated by p38 MAPK. Exp. Dermatol. 22, 476–481 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hau, C. S. et al. Visfatin enhances the production of cathelicidin antimicrobial peptide, human β-defensin-2, human β-defensin-3, and S100A7 in human keratinocytes and their orthologs in murine imiquimod-induced psoriatic skin. Am. J. Pathol. 182, 1705–1717 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. CCN1 promotes IL-1β production in keratinocytes by activating p38 MAPK signaling in psoriasis. Sci. Rep. 7, 43310 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funding, A. T., Johansen, C., Kragballe, K. & Iversen, L. Mitogen- and stress-activated protein kinase 2 and cyclic AMP response element binding protein are activated in lesional psoriatic epidermis. J. Invest. Dermatol. 127, 2012–2019 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. MicroRNA let-7b inhibits keratinocyte differentiation by targeting IL-6 mediated ERK signaling in psoriasis. Cell Commun. Signal 16, 58 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. G., Fan, H. Y., Wang, T., Lin, L. Y. & Cai, T. G. Silencing KRT16 inhibits keratinocyte proliferation and VEGF secretion in psoriasis via inhibition of ERK signaling pathway. Kaohsiung J. Med. Sci. 35, 284–296 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J., Sun, L., Han, J., Zheng, W. & Peng, W. DUSP1/MKP-1 regulates proliferation and apoptosis in keratinocytes through the ERK/Elk-1/Egr-1 signaling pathway. Life Sci. 223, 47–53 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercurio, L., Albanesi, C. & Madonna, S. Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front. Med. 8, 665647 (2021).

    Article 

    Google Scholar
     

  • Chamcheu, J. C. et al. Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in human psoriasis and imiquimod-induced murine psoriasiform dermatitis model. Acta Derm. Venereol. 96, 854–856 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, T., Lin, X., Meng, X. & Lin, M. Phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin pathway in psoriasis pathogenesis. A potential therapeutic target? Acta Derm. Venereol. 94, 371–379 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Signaling pathways and targeted therapy for myocardial infarction. Sig. Transduct. Target Ther. 7, 78 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M. & Zhang, X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch. Dermatol. Res. 311, 83–91 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Teng, Y. et al. The PI3K/Akt pathway: emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells 10, 1219 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodani, N. & Nakae, J. Tissue-specific metabolic regulation of FOXO-binding protein: FOXO does not act alone. Cells 9, 702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Ran, L. W., Hui, K., Wang, X. Y. & Zheng, Y. Expressions of survivin, PI3K and AKT in keratinocytes in skin lesions and their pathogenic role in psoriasis vulgaris. Nan Fang. Yi Ke Da Xue Xue Bao 37, 1512–1516 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. Y. et al. Increased activities of Akt in psoriatic epidermis. Chin. J. Dermatol. 42, 413–416 (2009).

    CAS 

    Google Scholar
     

  • Ainali, C. et al. Transcriptome classification reveals molecular subtypes in psoriasis. BMC Genomics 13, 472 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Luo, W. & Chen, S. Comparison of gene expression profiles reveals aberrant expression of FOXO1, Aurora A/B and EZH2 in lesional psoriatic skins. Mol. Biol. Rep. 38, 4219–4224 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitra, A., Raychaudhuri, S. K. & Raychaudhuri, S. P. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 60, 38–42 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, A. B., Tsilioni, I., Weng, Z. & Theoharides, T. C. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp. Dermatol. 27, 135–143 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., Wu, J., Pier, E., Zhao, Y. & Shen, Z. mTORC2-PKBα/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 Stability by chemokine CCL3 in psoriasis. J. Invest. Dermatol. 133, 418–428 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinduro, O. et al. Constitutive autophagy and nucleophagy during epidermal differentiation. J. Invest. Dermatol. 136, 1460–1470 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 22, 138 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Downregulation of PTEN expression in psoriatic lesions. Int J. Dermatol. 53, 855–860 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, R., Wang, F. F., Cao, H. W. & Yang, J. Y. MiR-223 regulates proliferation and apoptosis of IL-22-stimulated HaCat human keratinocyte cell lines via the PTEN/Akt pathway. Life Sci. 230, 28–34 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, L. et al. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed. Pharmacother. 90, 524–530 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. et al. CircRAB3B suppresses proliferation, motility, cell cycle progression and promotes the apoptosis of IL-22-induced keratinocytes depending on the regulation of miR-1228-3p/PTEN axis in psoriasis. Autoimmunity 54, 303–312 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudjonsson, J. E. et al. Evidence for altered Wnt signaling in psoriatic skin. J. Invest. Dermatol. 130, 1849–1859 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Wnt/β-Catenin and Wnt5a/Ca pathways regulate proliferation and apoptosis of keratinocytes in psoriasis lesions. Cell Physiol. Biochem. 36, 1890–1902 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, D. et al. Differential DNA methylation of miRNA-encoding genes in psoriatic epidermis highlights the Wnt pathway. J. Invest. Dermatol. 143, 1594–1597.e14 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, A. et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J. Clin. Invest. 130, 5765–5781 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsoi, L. C. et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat. Commun. 6, 7001 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben Abdallah, H., Johansen, C. & Iversen, L. Key signaling pathways in psoriasis: recent insights from antipsoriatic therapeutics. Psoriasis 11, 83–97 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyerich, K., Eyerich, S., Hiller, J., Behrendt, H. & Traidl-Hoffmann, C. Chronic mucocutaneous candidiasis, from bench to bedside. Eur. J. Dermatol. 20, 260–265 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loo, W. J. et al. Clinical implications of targeting the JAK-STAT pathway in psoriatic disease: emphasis on the TYK2 pathway. J. Cutan. Med. Surg. 27, 3s–24s (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, L. et al. Transcription factor retinoid-related orphan receptor γt: a promising target for the treatment of psoriasis. Front. Immunol. 9, 1210 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoreschi, K. et al. TYK2 inhibition and its potential in the treatment of chronic inflammatory immune diseases. J. Dtsch Dermatol. Ges. 19, 1409–1420 (2021).

    PubMed 

    Google Scholar
     

  • Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Sig. Transduct. Target Ther. 6, 402 (2021).

    Article 

    Google Scholar
     

  • Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenner, D., Blaser, H. & Mak, T. W. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15, 362–374 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dietrich, D. & Gabay, C. Inflammation: IL-36 has proinflammatory effects in skin but not in joints. Nat. Rev. Rheumatol. 10, 639–640 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pohla, L. et al. Hyperproliferation is the main driver of metabolomic changes in psoriasis lesional skin. Sci. Rep. 10, 3081 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiebert, P. & Werner, S. Targeting metabolism to treat psoriasis. Nat. Med. 24, 537–539 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt, V., Morén, B., Fryklund, C., Colbert, R. A. & Stenkula, K. G. Acute cytokine treatment stimulates glucose uptake and glycolysis in human keratinocytes. Cytokine 161, 156057 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sylow, L., Kleinert, M., Richter, E. A. & Jensen, T. E. Exercise-stimulated glucose uptake – regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 13, 133–148 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodeib, A. A., Neinaa, Y. M. E., Zakaria, S. S. & Alshenawy, H. A. Glucose transporter-1 (GLUT-1) expression in psoriasis: correlation with disease severity. Int J. Dermatol. 57, 943–951 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdou, A. G., Maraee, A. H., Eltahmoudy, M. & El-Aziz, R. A. Immunohistochemical expression of GLUT-1 and Ki-67 in chronic plaque psoriasis. Am. J. Dermatopathol. 35, 731–737 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat. Med. 24, 617–627 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. et al. HIF-1α may promote glycolysis in psoriasis vulgaris via upregulation of CD147 and GLUT1. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 46, 333–344 (2021).

    PubMed 

    Google Scholar
     

  • Liu, Y. Z. et al. Pyruvate kinase M2 mediates glycolysis contributes to psoriasis by promoting keratinocyte proliferation. Front. Pharm. 12, 765790 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Veras, F. P. et al. Pyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammation. Cell Rep. 41, 111897 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kono, M. et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight 4, e127395 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damasceno, L. E. A. et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J. Exp. Med. 217, e20190613 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Certo, M., Tsai, C. H., Pucino, V., Ho, P. C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Claps, G. et al. The multiple roles of LDH in cancer. Nat. Rev. Clin. Oncol. 19, 749–762 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Le Floch, R. et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc. Natl Acad. Sci. USA 108, 16663–16668 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baba, M., Inoue, M., Itoh, K. & Nishizawa, Y. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem. Biophys. Res Commun. 374, 111–116 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walters, D. K., Arendt, B. K. & Jelinek, D. F. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 12, 3175–3183 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koguchi-Yoshioka, H. et al. Serum lactate dehydrogenase level as a possible predictor of treatment preference in psoriasis. J. Dermatol. Sci. 103, 109–115 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. CD147 is highly expressed on peripheral blood neutrophils from patients with psoriasis and induces neutrophil chemotaxis. J. Dermatol. 37, 1053–1056 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, C. et al. Epidermal CD147 expression plays a key role in IL-22-induced psoriatic dermatitis. Sci. Rep. 7, 44172 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okubo, A. et al. CD147 is essential for the development of psoriasis via the induction of Th17 cell differentiation. Int. J. Mol. Sci. 23, 177 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rambold, A. S. & Pearce, E. L. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 39, 6–18 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, J. X. et al. New conditions of HPLC analysis for separation and quantification of simple organic acids of tricarboxylic acid cycle in psoriasis. Acta Chromatographica. 33, 322–332 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fan, J. X., et al. Quantitative detection and metabolic profile analysis of metabolites of tricarboxylic acid cycle and amino acids in psoriasis serum before and after receiving monoclonal antibody treatment by one-pot GC-MS derivatization. Int. J. Mass. Spectrom, 460 116478 (2021).

  • Ghoreschi, K. et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mrowietz, U. et al. Clinical use of dimethyl fumarate in moderate-to-severe plaque-type psoriasis: a European expert consensus. J. Eur. Acad. Dermatol. Venereol. 32, 3–14 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 556, 501–504 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nastasi, C. et al. Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Sci. Rep. 11, 1458 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamleh, M. A. et al. LC-MS metabolomics of psoriasis patients reveals disease severity-dependent increases in circulating amino acids that are ameliorated by anti-TNFα treatment. J. Proteome Res. 14, 557–566 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Metabolomic profiling reveals amino acid and carnitine alterations as metabolic signatures in psoriasis. Theranostics 11, 754–767 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goetzman, E. S. & Prochownik, E. V. The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Front. Endocrinol. 9, 129 (2018).

    Article 

    Google Scholar
     

  • Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, X. et al. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J. Clin. Invest. 130, 5180–5196 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cibrian, D. et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat. Immunol. 17, 985–996 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cibrian, D. et al. Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation. J. Allergy Clin. Immunol. 145, 199–214.e111 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poitelon, Y., Kopec, A. M. & Belin, S. Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells 9, 812 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feingold, K. R. The outer frontier: the importance of lipid metabolism in the skin. J. Lipid Res. 50, S417–S422 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chibowska, M. [Role of serum lipids in pseriasis]. Przegl Dermatol 57, 255–260 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • Hammarström, S. et al. Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5,8,10,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2alpha in epidermis of psoriasis. Proc. Natl Acad. Sci. USA 72, 5130–5134 (1975).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorokin, A. V. et al. Bioactive Lipid Mediator Profiles in Human Psoriasis Skin and Blood. J. Invest. Dermatol. 138, 1518–1528 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. Phytosphingosine stimulates the differentiation of human keratinocytes and inhibits TPA-induced inflammatory epidermal hyperplasia in hairless mouse skin. Mol. Med. 12, 17–24 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myśliwiec, H. et al. Increase in circulating sphingosine-1-phosphate and decrease in ceramide levels in psoriatic patients. Arch. Dermatol. Res. 309, 79–86 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schaper, K. et al. Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis. J. Dermatol. Sci. 71, 29–36 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, S. et al. Inhibition of sphingosine 1-phosphate lyase activates human keratinocyte differentiation and attenuates psoriasis in mice. J. Lipid Res. 61, 20–32 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, S. H. et al. Inhibiting sphingosine kinase 2 derived-sphingosine-1-phosphate ameliorates psoriasis-like skin disease via blocking Th17 differentiation of naïve CD4 T lymphocytes in mice. Acta Derm. Venereol. 99, 594–601 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaclavkova, A. et al. Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 384, 2036–2045 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, P. et al. Lipidomic profiling reveals metabolic signatures in psoriatic skin lesions. Clin. Immunol. 246, 109212 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, C. et al. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis. Gigascience 6, 1–11 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, L. et al. Lysophosphatidic acid mediates the pathogenesis of psoriasis by activating keratinocytes through LPAR5. Sig. Transduct. Target Ther. 6, 19 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Decara, J. et al. Peroxisome proliferator-activated receptors: experimental targeting for the treatment of inflammatory bowel diseases. Front. Pharm. 11, 730 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schuster, C. et al. S1PR4-dependent CCL2 production promotes macrophage recruitment in a murine psoriasis model. Eur. J. Immunol. 50, 839–845 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaper, K., Kietzmann, M. & Bäumer, W. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol. Immunol. 59, 10–18 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dillmann, C. et al. S1PR4 signaling attenuates ILT 7 internalization to limit IFN-α production by human plasmacytoid dendritic cells. J. Immunol. 196, 1579–1590 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baeyens, A. A. L. & Schwab, S. R. Finding a way out: S1P signaling and immune cell migration. Annu. Rev. Immunol. 38, 759–784 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pietrzak, A., Michalak-Stoma, A., Chodorowska, G. & Szepietowski, J. C. Lipid disturbances in psoriasis: an update. Mediators Inflamm. 2010, 535612 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, Z., Yang, Y., Chang, C. & Lu, Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J. Autoimmun. 83, 43–50 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Generali, E., Ceribelli, A., Stazi, M. A. & Selmi, C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J. Autoimmun. 83, 51–61 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Multi-omics study in monozygotic twins confirm the contribution of de novo mutation to psoriasis. J. Autoimmun. 106, 102349 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J. Autoimmun. 133, 102916 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, J. Z. & McGee, J. S. Epigenetic-modifying therapies: an emerging avenue for the treatment of inflammatory skin diseases. Exp. Dermatol. 30, 1167–1176 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Surace, A. E. A. & Hedrich, C. M. The role of epigenetics in autoimmune/inflammatory disease. Front. Immunol. 10, 1525 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattei, A. L., Bailly, N. & Meissner, A. DNA methylation: a historical perspective. Trends Genet 38, 676–707 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberson, E. D. et al. A subset of methylated CpG sites differentiate psoriatic from normal skin. J. Invest. Dermatol. 132, 583–592 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, F. et al. Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis. Clin. Epigenetics 8, 131 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J. Autoimmun. 41, 17–24 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, F. et al. Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J. Invest. Dermatol. 136, 779–787 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P., Su, Y., Chen, H., Zhao, M. & Lu, Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J. Dermatol. Sci. 60, 40–42 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yooyongsatit, S. et al. Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J. Hum. Genet. 60, 349–355 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suarez, N. A., Macia, A. & Muotri, A. R. LINE-1 retrotransposons in healthy and diseased human brain. Dev. Neurobiol. 78, 434–455 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Guengerich, F. P. & Cheng, Q. Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharm. Rev. 63, 684–699 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, Y. et al. CYP2S1 might regulate proliferation and immune response of keratinocyte in psoriasis. Epigenetics 16, 618–628 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 17, 529–552 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Verma, D., Ekman, A. K., Bivik Eding, C. & Enerbäck, C. Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J. Invest. Dermatol. 138, 1088–1093 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandra, A., Senapati, S., Roy, S., Chatterjee, G. & Chatterjee, R. Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin. Epigenetics 10, 108 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. Genome-wide DNA methylation of Munro’s microabscess reveals the epigenetic regulation in the pathogenesis of psoriasis. Front. Immunol. 13, 1057839 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witte, K. et al. Increased presence and differential molecular imprinting of transit amplifying cells in psoriasis. J. Mol. Med. 98, 111–122 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Cui, S., Sun, J., Yan, X. & Han, D. Identification of potential biomarkers for psoriasis by DNA methylation and gene expression datasets. Front. Genet. 12, 722803 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, M. et al. DNA methylation markers in peripheral blood for psoriatic arthritis. J. Dermatol. Sci. 108, 39–47 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Aberrant promoter methylation of Wnt inhibitory factor-1 gene is a potential target for treating psoriasis. Clin. Immunol. 250, 109294 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Y., Yu, J., Li, F. & Ge, S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J. Exp. Clin. Cancer Res. 41, 144 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Lactate metabolism in human health and disease. Sig. Transduct. Target Ther. 7, 305 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Q., Osunsade, A. & David, Y. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. Nat. Commun. 11, 3241 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov. 5, 35 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications – cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gibson, F. et al. Epigenetic dysregulation in autoimmune and inflammatory skin diseases. Clin. Rev. Allergy Immunol. 63, 447–471 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P., Su, Y., Zhao, M., Huang, W. & Lu, Q. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur. J. Dermatol. 21, 552–557 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekman, A. K. & Enerbäck, C. Lack of preclinical support for the efficacy of histone deacetylase inhibitors in the treatment of psoriasis. Br. J. Dermatol. 174, 424–426 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat. Commun. 9, 1420 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samuelov, L. et al. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp. Dermatol. 31, 567–576 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thatikonda, S., Pooladanda, V., Sigalapalli, D. K. & Godugu, C. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis. 11, 21 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ariel, F. et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol. Cell 77, 1055–1065.e1054 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Wilusz, J. E. & Chen, L. L. Biogenesis and regulatory roles of circular RNAs. Annu. Rev. Cell Dev. Biol. 38, 263–289 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics – challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, R. et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Invest. 128, 2551–2568 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Hsa_circ_0004287 inhibits macrophage-mediated inflammation in an N(6)-methyladenosine-dependent manner in atopic dermatitis and psoriasis. J. Allergy Clin. Immunol. 149, 2021–2033 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agbu, P. & Carthew, R. W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol. 22, 425–438 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, G., Hernández-Illán, E., Moreira, L., Balaguer, F. & Goel, A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111–130 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, H. et al. MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH. Cell Metab. 34, 978–990.e974 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J. et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 8, eabk0011 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dopytalska, K., Ciechanowicz, P., Wiszniewski, K., Szymańska, E. & Walecka, I. The role of epigenetic factors in psoriasis. Int J. Mol. Sci. 22, 9294 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H., Zhou, L. & Dai, J. Retinoic acid receptor-related orphan receptor RORα regulates differentiation and survival of keratinocytes during hypoxia. J. Cell Physiol. 233, 641–650 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Inhibition of miR-155 attenuates CD14(+) monocyte-mediated inflammatory response and oxidative stress in psoriasis through TLR4/MyD88/NF-κB signaling pathway. Clin. Cosmet. Investig. Dermatol 15, 193–201 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Q. et al. Silencing of miR‑155 suppresses inflammatory responses in psoriasis through inflammasome NLRP3 regulation. Int J. Mol. Med. 42, 1086–1095 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, W. et al. Ebosin ameliorates psoriasis-like inflammation of mice via miR-155 targeting tnfaip3 on IL-17 pathway. Front. Immunol. 12, 662362 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. The miR-155/GATA3/IL37 axis modulates the production of proinflammatory cytokines upon TNF-α stimulation to affect psoriasis development. Exp. Dermatol. 29, 647–658 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. MiR-155 inhibits TP53INP1 expression leading to enhanced glycolysis of psoriatic mesenchymal stem cells. J. Dermatol. Sci. 105, 142–151 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdallah, F. & Pichon, C. Evidence on the direct correlation between miR-31 and IL-22 axis in IMQ-induced psoriasis. Exp. Dermatol. 28, 1336–1340 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. J. et al. Metabolic rewiring in keratinocytes by miR-31-5p identifies therapeutic intervention for psoriasis. EMBO Mol. Med. 15, e15674 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Levels of miR-31 and its target genes in dermal mesenchymal cells of patients with psoriasis. Int J. Dermatol. 58, 198–204 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. K., Wang, Z. & Li, G. MicroRNA-125 in immunity and cancer. Cancer Lett. 454, 134–145 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raaby, L. et al. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab. Br. J. Dermatol. 173, 436–447 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, F., Jin, L. & Liu, W. MicroRNA-125a correlates with decreased psoriasis severity and inflammation and represses keratinocyte proliferation. Dermatology 237, 568–578 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop affects psoriasis pathogenesis via regulating human keratinocyte proliferation. Cytokine 144, 155535 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, M., Huang, Y., Zhu, X., Lin, X. & Luo, D. miR‑125b‑mediated regulation of cell proliferation through the Jagged‑1/Notch signaling pathway by inhibiting BRD4 expression in psoriasis. Mol. Med. Rep. 19, 5227–5236 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. CircVAPA contributes to hyper-proliferation and inflammation of keratinocytes through miR-125b-5p/sirt6 axis in psoriasis. Int. Immunopharmacol. 115, 109632 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhari, S., Sardana, K. & Saini, N. miR-4516, a microRNA downregulated in psoriasis inhibits keratinocyte motility by targeting fibronectin/integrin α9 signaling. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 3142–3152 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhari, S. & Saini, N. hsa-miR-4516 mediated downregulation of STAT3/CDK6/UBE2N plays a role in PUVA induced apoptosis in keratinocytes. J. Cell Physiol. 229, 1630–1638 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava, A. et al. Cross-talk between IFN-γ and TWEAK through miR-149 amplifies skin inflammation in psoriasis. J. Allergy Clin. Immunol. 147, 2225–2235 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. IRF3-binding lncRNA-ISIR strengthens interferon production in viral infection and autoinflammation. Cell Rep. 37, 109926 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Y. et al. Long noncoding RNA LERFS negatively regulates rheumatoid synovial aggression and proliferation. J. Clin. Invest. 128, 4510–4524 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akıncılar, S. C. et al. NAIL: an evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut 70, 1857–1871 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, J. et al. Long noncoding RNA expression profile and functional analysis in psoriasis. Mol. Med. Rep. 19, 3421–3430 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsoi, L. C. et al. Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol. 16, 24 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. LncRNA NORAD engages in psoriasis by binding to miR-26a to regulate keratinocyte proliferation. Autoimmunity 54, 129–137 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao, M., Li, R., Zhao, X., Yan, J. & Sun, Q. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7. Exp. Cell Res. 363, 243–254 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, Q. et al. LncRNA RP6-65G23.1 accelerates proliferation and inhibits apoptosis via p-ERK1/2/p-AKT signaling pathway on keratinocytes. J. Cell Biochem. 121, 4580–4589 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Knockdown of lncRNA MIR31HG inhibits cell proliferation in human HaCaT keratinocytes. Biol. Res. 51, 30 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, H. Y. et al. LncRNA MEG3 influences the proliferation and apoptosis of psoriasis epidermal cells by targeting miR-21/caspase-8. BMC Mol. Cell Biol. 20, 46 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al. LOC285194 inhibits proliferation of human keratinocytes through regulating miR-616/GATA3 pathway. Mol. Cell Probes 53, 101598 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, R. et al. Landscape of long noncoding RNAs in psoriatic and healthy skin. J. Invest. Dermatol. 136, 603–609 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, R. et al. Identification of a long noncoding RNA TRAF3IP2-AS1 as key regulator of IL-17 signaling through the SRSF10-IRF1-Act1 axis in autoimmune diseases. J. Immunol. 206, 2353–2365 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 21, 475–490 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat. Commun. 12, 295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution. Nat. Commun. 11, 4076 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, M. et al. Circular RNA expression profile and analysis of their potential function in psoriasis. Cell Physiol. Biochem. 50, 15–27 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. hsa_circ_0003738 inhibits the suppressive function of tregs by targeting miR-562/IL-17A and miR-490-5p/IFN-γ signaling pathway. Mol. Ther. Nucleic Acids 21, 1111–1119 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oerum, S., Meynier, V., Catala, M. & Tisné, C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 49, 7239–7255 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. N. & Jin, H. Z. Transcriptome-wide m(6)A methylation in skin lesions from patients with psoriasis vulgaris. Front. Cell Dev. Biol. 8, 591629 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian, J. et al. N(6)-methyladenosine-modified long non-coding RNA AGAP2-AS1 promotes psoriasis pathogenesis via miR-424-5p/AKT3 axis. J. Dermatol. Sci. 105, 27–36 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z. et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells. Cell Rep. 42, 112684 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strauss, H. Zur Lehre von der neurogenen und der thyreogenen Glykosurie (Schluss aus No. 18.). Dtsch. Medizinische WOCHENSCHR. – DEUT MED WOCHENSCHR 23, 309–312 (1897).

    Article 

    Google Scholar
     

  • Greenberg, R. et al. Comorbidities in patients with palmoplantar plaque psoriasis. J. Am. Acad. Dermatol. 84, 639–643 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ruiz Genao, D. P. et al. Differences in epidemiology, comorbidities and treatment choice between plaque psoriasis and pustular psoriasis: results from the BIOBADADERM registry. Br. J. Dermatol. 187, 817–820 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L., Wang, Y., Qiu, L. & Wu, J. Psoriasis and cardiovascular disease risk in European and East Asian populations: evidence from meta-analysis and Mendelian randomization analysis. BMC Med. 20, 421 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava, A. K. et al. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J. Autoimmun. 118, 102614 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Y., Lee, C. H. & Chi, C. C. Association of psoriasis with colorectal cancer. J. Am. Acad. Dermatol. 85, 1429–1436 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Vaengebjerg, S., Skov, L., Egeberg, A. & Loft, N. D. Prevalence, incidence, and risk of cancer in patients with psoriasis and psoriatic arthritis: a systematic review and meta-analysis. JAMA Dermatol. 156, 421–429 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quaranta, M. et al. Differential contribution of CDKAL1 variants to psoriasis, Crohn’s disease and type II diabetes. Genes Immun. 10, 654–658 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Identification of PTPN22, ST6GAL1 and JAZF1 as psoriasis risk genes demonstrates shared pathogenesis between psoriasis and diabetes. Exp. Dermatol. 26, 1112–1117 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buerger, C. et al. Interleukin-1β interferes with epidermal homeostasis through induction of insulin resistance: implications for psoriasis pathogenesis. J. Invest Dermatol. 132, 2206–2214 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, N. et al. Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease. J. Med. Genet. 45, 114–116 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cottone, M., Sapienza, C., Macaluso, F. S. & Cannizzaro, M. Psoriasis and inflammatory bowel disease. Dig. Dis. 37, 451–457 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kakurai, M. et al. Vasoactive intestinal peptide and inflammatory cytokines enhance vascular endothelial growth factor production from epidermal keratinocytes. Br. J. Dermatol. 161, 1232–1238 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kowalczyk, A., Kleniewska, P., Kolodziejczyk, M., Skibska, B. & Goraca, A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch. Immunol. Ther. Exp. 63, 41–52 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Alouffi, S., Faisal, M., Alatar, A. A. & Ahmad, S. Oxidative modification of LDL by various physicochemical techniques: its probable role in diabetes coupled with CVDs. Biomed. Res. Int. 2018, 7390612 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, C. M. et al. The roles of lipoprotein in psoriasis. Int J. Mol. Sci. 21, 859 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karbach, S. et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler. Thromb. Vasc. Biol. 34, 2658–2668 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barros, G., Duran, P., Vera, I. & Bermúdez, V. Exploring the links between obesity and psoriasis: a comprehensive review. Int. J. Mol. Sci. 23, 7499 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, Y. et al. New insights into different adipokines in linking the pathophysiology of obesity and psoriasis. Lipids Health Dis. 18, 171 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Parra, S. & Daudén, E. Psoriasis and depression: the role of inflammation. Actas Dermosifiliogr. 110, 12–19 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lada, G., Chinoy, H., Talbot, P. S., Warren, R. B. & Kleyn, C. E. The relationship of depression and systemic inflammation in psoriasis: findings from the UK biobank. J. Invest. Dermatol. 143, 1091–1094 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marek-Jozefowicz, L. et al. The brain-skin axis in psoriasis-psychological, psychiatric, hormonal, and dermatological aspects. Int. J. Mol. Sci. 23, 669 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamiya, K., Kishimoto, M., Sugai, J., Komine, M. & Ohtsuki, M. Risk factors for the development of psoriasis. Int. J. Mol. Sci. 20, 4347 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pace, T. W. & Miller, A. H. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann. NY Acad. Sci. 1179, 86–105 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svoboda, S. A., Ghamrawi, R. I., Owusu, D. A. & Feldman, S. R. Treatment goals in psoriasis: which outcomes matter most? Am. J. Clin. Dermatol. 21, 505–511 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Nast, A. & Schmitt, J. Physician Global Assessment (PGA) and Psoriasis Area and Severity Index (PASI): why do both? A systematic analysis of randomized controlled trials of biologic agents for moderate to severe plaque psoriasis. J. Am. Acad. Dermatol. 68, 1040–1041 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Nast, A. et al. EuroGuiDerm Guideline on the systemic treatment of Psoriasis vulgaris – Part 1: treatment and monitoring recommendations. J. Eur. Acad. Dermatol. Venereol. 34, 2461–2498 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McInnes, I. B. et al. Secukinumab versus adalimumab for treatment of active psoriatic arthritis (EXCEED): a double-blind, parallel-group, randomised, active-controlled, phase 3b trial. Lancet 395, 1496–1505 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elewski, B. E. et al. Adalimumab for nail psoriasis: efficacy and safety from the first 26 weeks of a phase 3, randomized, placebo-controlled trial. J. Am. Acad. Dermatol. 78, 90–99.e1 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castela, E. et al. Topical corticosteroids in plaque psoriasis: a systematic review of efficacy and treatment modalities. J. Eur. Acad. Dermatol. Venereol. 26, 36–46 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hengge, U. R., Ruzicka, T., Schwartz, R. A. & Cork, M. J. Adverse effects of topical glucocorticosteroids. J. Am. Acad. Dermatol. 54, 1–15 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, E. S. & Frampton, J. E. Calcipotriol/betamethasone dipropionate foam: a review in plaque psoriasis. Drugs 76, 1485–1492 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCormack, P. L. Calcipotriol/betamethasone dipropionate: a review of its use in the treatment of psoriasis vulgaris of the trunk, limbs and scalp. Drugs 71, 709–730 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugarman, J. L. et al. A phase 2, multicenter, double-blind, randomized, vehicle controlled clinical study to assess the safety and efficacy of a halobetasol/tazarotene fixed combination in the treatment of plaque psoriasis. J. Drugs Dermatol. 16, 197–204 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, A. K. et al. Tacrolimus ointment for the treatment of psoriasis on the face and intertriginous areas. J. Am. Acad. Dermatol. 48, 564–568 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kalb, R. E., Strober, B., Weinstein, G. & Lebwohl, M. Methotrexate and psoriasis: 2009 National Psoriasis Foundation Consensus Conference. J. Am. Acad. Dermatol. 60, 824–837 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Flytström, I., Stenberg, B., Svensson, A. & Bergbrant, I. M. Methotrexate vs. ciclosporin in psoriasis: effectiveness, quality of life and safety. A randomized controlled trial. Br. J. Dermatol. 158, 116–121 (2008).

    PubMed 

    Google Scholar
     

  • Goldfarb, M. T. et al. Acitretin improves psoriasis in a dose-dependent fashion. J. Am. Acad. Dermatol. 18, 655–662 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmets, C. A. et al. Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis with phototherapy. J. Am. Acad. Dermatol. 81, 775–804 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Archier, E. et al. Efficacy of psoralen UV-A therapy vs. narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. J. Eur. Acad. Dermatol. Venereol. 26, 11–21 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoy, S. M. & Scott, L. J. Etanercept: a review of its use in the management of ankylosing spondylitis and psoriatic arthritis. Drugs 67, 2609–2633 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tobin, A.-M. & Kirby, B. TNF alpha inhibitors in the treatment of psoriasis and psoriatic arthritis. BioDrugs 19, 47–57 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonardi, C. L. et al. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014–2022 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyring, S. et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367, 29–35 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mease, P. J. et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 385–390 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sterry, W. et al. Comparison of two etanercept regimens for treatment of psoriasis and psoriatic arthritis: PRESTA randomised double blind multicentre trial. BMJ 340, c147 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Antoni, C. et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann. Rheum. Dis. 64, 1150–1157 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gottlieb, A. B. et al. Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol. 51, 534–542 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Reich, K. et al. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366, 1367–1374 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, J. et al. Efficacy and safety of infliximab vs. methotrexate in patients with moderate-to-severe plaque psoriasis: results of an open-label, active-controlled, randomized trial (RESTORE1). Br. J. Dermatol. 165, 1109–1117 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vries, A. C. et al. A prospective randomized controlled trial comparing infliximab and etanercept in patients with moderate-to-severe chronic plaque-type psoriasis: the Psoriasis Infliximab vs. Etanercept Comparison Evaluation (PIECE) study. Br. J. Dermatol. 176, 624–633 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Menter, A. et al. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J. Am. Acad. Dermatol. 58, 106–115 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Gordon, K. et al. Long-term efficacy and safety of adalimumab in patients with moderate to severe psoriasis treated continuously over 3 years: results from an open-label extension study for patients from REVEAL. J. Am. Acad. Dermatol. 66, 241–251 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–1550 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McInnes, I. B. et al. Trial of upadacitinib and adalimumab for psoriatic arthritis. N. Engl. J. Med. 384, 1227–1239 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kremenevski, I., Sander, O., Sticherling, M., Raithel, M. & LastName, F. M. Paradoxical reactions to biologicals in chronic inflammatory systemic diseases. Dtsch Arztebl Int. 119, 88–95 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fania, L. et al. Paradoxical psoriasis induced by TNF-α blockade shows immunological features typical of the early phase of psoriasis development. J. Pathol. Clin. Res. 6, 55–68 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krueger, J. G. et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J. Allergy Clin. Immunol. 144, 750–763 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon, K. B. et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N. Engl. J. Med. 375, 345–356 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebwohl, M. et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373, 1318–1328 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mease, P. J. et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370, 2295–2306 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mease, P. J., Helliwell, P. S., Hjuler, K. F., Raymond, K. & McInnes, I. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann. Rheum. Dis. 80, 185–193 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon, K. B. et al. Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): a multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial. Lancet 397, 475–486 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • European medicines agency. Bimzelx: overview (European medicines agency, 2021).

  • Pharmaceuticals and Medical Devices Agency. New drugs approved in FY 2021 (Pharmaceuticals and Medical Devices Agency, 2022).

  • McInnes, I. B. et al. Bimekizumab in patients with psoriatic arthritis, naive to biologic treatment: a randomised, double-blind, placebo-controlled, phase 3 trial (BE OPTIMAL). Lancet 401, 25–37 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reich, K. et al. Bimekizumab versus secukinumab in plaque psoriasis. N. Engl. J. Med. 385, 142–152 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warren, R. B. et al. Bimekizumab versus adalimumab in plaque psoriasis. N. Engl. J. Med. 385, 130–141 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeilding, N. et al. Development of the IL-12/23 antagonist ustekinumab in psoriasis: past, present, and future perspectives. Ann. NY Acad. Sci. 1222, 30–39 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimball, A. B. et al. Long-term efficacy of ustekinumab in patients with moderate-to-severe psoriasis: results from the PHOENIX 1 trial through up to 3 years. Br. J. Dermatol. 166, 861–872 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gossec, L. et al. Persistence and effectiveness of the IL-12/23 pathway inhibitor ustekinumab or tumour necrosis factor inhibitor treatment in patients with psoriatic arthritis: 1-year results from the real-world PsABio Study. Ann. Rheum. Dis. 81, 823–830 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letarouilly, J.-G. et al. Secukinumab and ustekinumab treatment in psoriatic arthritis: results of a direct comparison. Rheumatology 60, 2773–2782 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rich, P. et al. Ustekinumab improves nail disease in patients with moderate-to-severe psoriasis: results from PHOENIX 1. Br. J. Dermatol. 170, 398–407 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gossec, L. et al. Long-term effectiveness and persistence of ustekinumab and TNF inhibitors in patients with psoriatic arthritis: final 3-year results from the PsABio real-world study. Ann. Rheum. Dis. 82, 496–506 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Puig, L., Morales-Múnera, C. E., López-Ferrer, A. & Geli, C. Ustekinumab treatment of TNF antagonist-induced paradoxical psoriasis flare in a patient with psoriatic arthritis: case report and review. Dermatology 225, 14–17 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Markham, A. Guselkumab: first global approval. Drugs 77, 1487–1492 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deodhar, A. et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 395, 1115–1125 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McInnes, I. B. et al. Efficacy and safety of guselkumab, an interleukin-23p19-specific monoclonal antibody, through one year in biologic-naive patients with psoriatic arthritis. Arthritis Rheumatol. 73, 604–616 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reich, K. et al. Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE): results from a phase 3, randomised controlled trial. Lancet 394, 831–839 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reich, K. et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: Results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J. Am. Acad. Dermatol. 76, 418–431 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papp, K. et al. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo-controlled trial. Br. J. Dermatol. 173, 930–939 (2015).

    Article 
    CAS