Friday, December 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Smart nanoparticles for cancer therapy – Signal Transduction and Targeted Therapy


  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71, 209–249 (2021).

    PubMed 

    Google Scholar
     

  • Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68, 394–424 (2018).

    PubMed 

    Google Scholar
     

  • Messinger, Y. H. et al. Bortezomib combined with VXLD chemotherapy is highly effective in advanced B-lineage acute lymphoblastic leukemia allowing early study termination due to efficacy. A Therapeutic Advances in Childhood Leukemia (TACL) Consortium Phase II Study. Blood 118, 251 (2011).

    Article 

    Google Scholar
     

  • Hosomi, Y. et al. Gefitinib alone versus gefitinib plus chemotherapy for non–small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 Study. J. Clin. Oncol. 38, 115–123 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baghban, R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfarouk, K. O. et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 15, 1–13 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, P. K. Drug targeting in cancer chemotherapy: a clinical perspective. J. Pharm. Sci. 79, 949–962 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles─from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J., Liu, Z., Pang, Y. & Zhou, H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol. 20, 127 (2022).

    Article 

    Google Scholar
     

  • Herdiana, Y., Wathoni, N., Shamsuddin, S. & Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon 8, e08674 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senapati, S., Mahanta, A. K., Kumar, S. & Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3, 7 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joy, R., George, J. & John, F. Brief outlook on polymeric nanoparticles, micelles, niosomes, hydrogels and liposomes: preparative methods and action. ChemistrySelect 7, e202104045 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, M. et al. Delivery of triptolide with reduction-sensitive polymer nanoparticles for liver cancer therapy on patient-derived xenografts models. Chin. Chem. Lett. 31, 3178–3182 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hong, Z. et al. Local delivery of superagonist gene based on polymer nanoparticles for cancer immunotherapy. Chin. Chem. Lett. 34, 107603 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahmana, N. et al. Ocular biodistribution of spironolactone after a single intravitreal injection of a biodegradable sustained-release polymer in rats. Mol. Pharm. 17, 59–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Cheng, R., Cheng, L. & Zhong, Z. Lipoyl ester terminated star PLGA as a simple and smart material for controlled drug delivery application. Biomacromolecules 19, 1368–1373 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira Soares, D. C., Domingues, S. C., Viana, D. B. & Tebaldi, M. L. Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed. Pharmacother. 131, 110695 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajba, L. & Guttman, A. The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol. Adv. 34, 354–361 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, C., Lu, J. & Lin, W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Rel. 219, 224–236 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pelegri-O’Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, A. P., Biswas, A., Shukla, A. & Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 4, 33 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mhlwatika, Z. & Aderibigbe, B. A. Application of dendrimers for the treatment of infectious diseases. Molecules 23, 2205 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Gallego, S. et al. Function oriented molecular design: dendrimers as novel antimicrobials. Molecules 22, 1581 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, A., Veiga, F. & Figueiras, A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials 13, 65 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomalia, D. A., Nixon, L. S. & Hedstrand, D. M. The role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties. Biomolecules 10, 642 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recio-Ruiz, J. et al. Amphiphilic dendritic hydrogels with carbosilane nanodomains: preparation and characterization as drug delivery systems. Chem. Mater. 35, 2797–2807 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinageshwar, B. et al. PAMAM dendrimers cross the blood–brain barrier when administered through the carotid artery in C57BL/6J mice. Int. J. Mol. Sci. 18, 628 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vacas-Cordoba, E. et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int. J. Nanomed. 11, 1281 (2016).

    CAS 

    Google Scholar
     

  • Kaminskas, L. M. et al. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J. Control. Rel. 152, 241–248 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ambekar, R. S., Choudhary, M. & Kandasubramanian, B. Recent advances in dendrimer-based nanoplatform for cancer treatment: a review. Eur. Polym. J. 126, 109546 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Owen, S. C., Chan, D. P. Y. & Shoichet, M. S. Polymeric micelle stability. Nano Today 7, 53–65 (2012).

    Article 
    CAS 

    Google Scholar
     

  • O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011).

    Article 

    Google Scholar
     

  • Hussein, Y. H. A. & Youssry, M. Polymeric micelles of biodegradable diblock copolymers: enhanced encapsulation of hydrophobic drugs. Materials 11, 688 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cong, Z. et al. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int. J. Nanomed. 13, 8549 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, N., Wang, Z. & Zhao, Y. Selective inhibition of Tumor necrosis factor receptor-1 (TNFR1) for the treatment of autoimmune diseases. Cytokine Growth Factor Rev. 55, 80–85 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Thermo-and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics 8, 4097–4115 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, W., Ye, G., Duan, X., Yang, X. & Yang, V. C. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer. Int. J. Nanomed. 12, 1047 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur. J. Pharm. Sci. 76, 95–101 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, H., Yin, W., Wen, L., Mao, A. & Lang, M. An injectable thermo-sensitive hydrogel of PNICL-PEG-PNICL block copolymer as a sustained release carrier of EGCG. Eur. Polym. J. 195, 112214 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Novel ultra-small micelles based on ginsenoside Rb1: a potential nanoplatform for ocular drug delivery. Drug Deliv. 26, 481–489 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y. et al. Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: optimization, in vitro, and in vivo evaluation. Drug Deliv. 26, 158–167 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. et al. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 9, 176–182 (2014).

    Article 

    Google Scholar
     

  • Otake, K. et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 22, 2543–2550 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y., Liang, X., An, Y. & Dai, Z. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer. Bioconjug. Chem. 27, 2931–2942 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Q. et al. Liposome-based anchoring and core-encapsulation for combinatorial cancer therapy. Chin. Chem. Lett. 33, 4191–4196 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Petersen, A. L., Hansen, A. E., Gabizon, A. & Andresen, T. L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 64, 1417–1435 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Børresen, B. et al. Theranostic imaging may vaccinate against the therapeutic benefit of long circulating PEGylated liposomes and change cargo pharmacokinetics. ACS Nano 12, 11386–11398 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zununi Vahed, S., Salehi, R., Davaran, S. & Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C. 71, 1327–1341 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777–787 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Additive nanomanufacturing of lab-on-a-chip fluorescent peptide nanoparticle arrays for Alzheimer’s disease diagnosis. Bio-Des. Manuf. 1, 182–194 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, L. et al. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem. Eng. J. 405, 126733 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Fu, D., Zhang, L. & Sun, L. Detection of amyloid-beta by Fmoc-KLVFF self-assembled fluorescent nanoparticles for Alzheimer’s disease diagnosis. Chin. Chem. Lett. 32, 1066–1070 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sun, L., Lei, Y., Wang, Y. & Liu, D. Blood-based Alzheimer’s disease diagnosis using fluorescent peptide nanoparticle arrays. Chin. Chem. Lett. 33, 1946–1950 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Z., Sun, L., Huang, Y., Wang, Y. & Zhang, M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 11, 388–394 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, M., Hu, H., Sun, L. & Fan, Z. The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: a mini-review. Chin. Chem. Lett. 31, 1729–1736 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iglesias, J. nab-Paclitaxel (Abraxane®): an albumin-bound cytotoxic exploiting natural delivery mechanisms into tumors. Breast Cancer Res. 11, S21 (2009).

    Article 
    PubMed Central 

    Google Scholar
     

  • Hawkins, M. J., Soon-Shiong, P. & Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev. 60, 876–885 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhen, X., Cheng, P. & Pu, K. Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small 15, 1804105 (2019).

    Article 

    Google Scholar
     

  • Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018).

    Article 

    Google Scholar
     

  • Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, X. et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 111, 116–123 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R., He, Y., Zhang, S., Qin, J. & Wang, J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B. 8, 14–22 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Q. et al. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27, 7043–7050 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brühwiler, D. Postsynthetic functionalization of mesoporous silica. Nanoscale 2, 887–892 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popat, A., Liu, J., Lu, G. Q. & Qiao, S. Z. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem. 22, 11173–11178 (2012).

    Article 
    CAS 

    Google Scholar
     

  • He, Q. et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31, 1085–1092 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Enzyme-powered hollow nanorobots for active microsampling enabled by thermoresponsive polymer gating. ACS Nano 16, 10354–10363 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanes, R. E. & Tamanoi, F. Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther. Deliv. 3, 389–404 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y., Deng, T., Pan, Y. & Zink, J. I. Use of ferritin capped mesoporous silica nanoparticles for redox and pH triggered drug release in vitro and in vivo. Adv. Funct. Mater. 30, 2002043 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Tumor-targeted biodegradable multifunctional nanoparticles for cancer theranostics. Chem. Eng. J. 378, 122171 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 11, 313–327 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Zhou, L., Su, Y., Zhang, R. & Dong, C.-M. One-pot photoreduction to prepare NIR-absorbing plasmonic gold nanoparticles tethered by amphiphilic polypeptide copolymer for synergistic photothermal-chemotherapy. Chin. Chem. Lett. 30, 187–191 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Singh, P. et al. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19, 1979 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, P. et al. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif. Cells Nanomed. Biotechnol. 46, 2022–2032 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Singh, P. et al. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif. Cells Nanomed. Biotechnol. 44, 811–816 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Aldewachi, H. et al. Gold nanoparticle-based colorimetric biosensors. Nanoscale 10, 18–33 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, P. et al. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym. Microb. Technol. 86, 75–83 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Menon, J. U. et al. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3, 152–166 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, M. R. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl Acad. Sci. USA 114, E3110–E3118 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, X. et al. Multifunctional Au modified Ti3C2-MXene for photothermal/enzyme dynamic/immune synergistic therapy. Nano Lett. 22, 8321–8330 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, D., Saini, N., Jain, N., Sareen, R. & Pandit, V. Gold nanoparticles: an era in bionanotechnology. Expert Opin. Drug Deliv. 10, 397–409 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Tumor-specific photothermal-therapy-assisted immunomodulation via multiresponsive adjuvant nanoparticles. Adv. Mater. 35, 2300086 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gasparri, A. M. et al. Boosting interleukin-12 antitumor activity and synergism with immunotherapy by targeted delivery with isoDGR-tagged nanogold. Small 15, 1903462 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kong, F.-Y. et al. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22, 1445 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palanisamy, S. & Wang, Y.-M. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 48, 9490–9515 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cano, M., Núñez-Lozano, R., Dumont, Y., Larpent, C. & de la Cueva-Méndez, G. Synthesis and characterization of multifunctional superparamagnetic iron oxide nanoparticles (SPION)/C 60 nanocomposites assembled by fullerene–amine click chemistry. RSC Adv. 6, 70374–70382 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dadfar, S. M. et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 138, 302–325 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact. Mater. 12, 214–245 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Santhosh, P. B. & Ulrih, N. P. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett. 336, 8–17 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zrazhevskiy, P., Sena, M. & Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39, 4326–4354 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, X. et al. Highly green fluorescent Nb2C MXene quantum dots for Cu2+ ion sensing and cell imaging. Chin. Chem. Lett. 31, 3173–3177 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bajwa, N., Mehra, N. K., Jain, K. & Jain, N. K. Pharmaceutical and biomedical applications of quantum dots. Artif. Cells Nanomed. Biotechnol. 44, 758–768 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Qi, L. & Gao, X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 5, 263–267 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertino, M. F. et al. Quantum dots by ultraviolet and x-ray lithography. Nanotechnology 18, 315603 (2007).

    Article 

    Google Scholar
     

  • Valizadeh, A. et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, S. et al. Highly luminescence manganese doped carbon dots. Chin. Chem. Lett. 30, 1051–1054 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Iannazzo, D. et al. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 518, 185–192 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 16, 8076–8094 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article 

    Google Scholar
     

  • Liu, Z., Robinson, J. T., Tabakman, S. M., Yang, K. & Dai, H. Carbon materials for drug delivery & cancer therapy. Mater. Today 14, 316–323 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cantoro, M. et al. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett. 6, 1107–1112 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eatemadi, A. et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 393 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., de Barros, A. L. B., Soares, D. C. F., Moss, S. N. & Alisaraie, L. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int. J. Pharm. 524, 41–54 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lay, C. L., Liu, J. & Liu, Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 8, 561–566 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadidi, N., Kobarfard, F., Nafissi-Varcheh, N. & Aboofazeli, R. PEGylated single-walled carbon nanotubes as nanocarriers for cyclosporin a delivery. AAPS PharmSciTech 14, 593–600 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. T.-W. & Al-Jamal, K. T. Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine 10, 2639–2642 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, R. et al. Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 13, 1714–1723 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, X. et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 7, 91 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. User-defined gestures for gestural interaction: extending from hands to other body parts. Int. J. Hum. Comput. Interact. 34, 238–250 (2018).

    Article 

    Google Scholar
     

  • Bridgman, P. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

    Article 
    CAS 

    Google Scholar
     

  • Wu, F. et al. Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem. Eng. J. 370, 387–399 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fojtů, M., Chia, X., Sofer, Z., Masařík, M. & Pumera, M. Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater. 27, 1701955 (2017).

    Article 

    Google Scholar
     

  • Deng, L. et al. Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Sci. Bull. 63, 917–924 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, C. et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliva González, C. M., Kharisov, B. I. & Kharissova, O. V. & Serrano Quezada, T.E. Synthesis and applications of MOF-derived nanohybrids: A review. Mater. Today. Proc. 46, 3018–3029 (2021).

    Article 

    Google Scholar
     

  • Zhang, H. et al. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. commun. 54, 5268–5288 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wuttke, S., Lismont, M., Escudero, A., Rungtaweevoranit, B. & Parak, W. J. Positioning metal-organic framework nanoparticles within the context of drug delivery–a comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 123, 172–183 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J., Huang, J., Zhang, L. & Lei, J. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 50, 1188–1218 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Zhou, J., Wang, L. & Xie, Z. Endogenous hydrogen sulfide-triggered MOF-based nanoenzyme for synergic cancer therapy. ACS Appl. Mater. Interfaces 12, 30213–30220 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, D., Yang, K. & Nie, Z. Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. VIEW 2, 20200067 (2021).

    Article 

    Google Scholar
     

  • Kumar, R. et al. Core–shell nanostructures: perspectives towards drug delivery applications. J. Mater. Chem. B 8, 8992–9027 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Su, H. et al. Janus particles: design, preparation, and biomedical applications. Mater. Today Bio 4, 100033 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, S., Famta, P., Raghuvanshi, R. S., Singh, S. B. & Srivastava, S. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci. Commun. 46, 100570 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Topologically induced heterogeneity in gradient copolymer brush particle materials. Macromolecules 55, 8846–8856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dai, X., Zhang, X., Gao, L., Xu, Z. & Yan, L.-T. Topology mediates transport of nanoparticles in macromolecular networks. Nat. Commun. 13, 4094 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M., Zhao, G., Su, W.-K. & Shuai, Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front. Chem. 8, 647 (2020).

  • Wang, L. et al. Disentangling light- and temperature-induced thermal effects in colloidal Au nanoparticles. J. Phys. Chem. C. 126, 3591–3599 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kawamura, A., Katoh, T., Uragami, T. & Miyata, T. Design of molecule-responsive organic–inorganic hybrid nanoparticles bearing cyclodextrin as ligands. Polym. J. 47, 206–211 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hossen, S. et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J. Adv. Res. 15, 1–18 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, J. et al. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. Wiley Interdiscip. Rev. Nanomed. 12, e1581 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kanamala, M., Wilson, W. R., Yang, M., Palmer, B. D. & Wu, Z. J. B. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 32, 693–710 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao, Y. et al. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. 11, e1527 (2019).

    Article 

    Google Scholar
     

  • Li, R., Peng, F., Cai, J., Yang, D. & Zhang, P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J. Pharm. Sci. 15, 311–325 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z.-T., Huang-Fu, M.-Y., Xu, W.-H. & Han, M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur. J. Pharm. Biopharm. 137, 122–130 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De La Rica, R., Aili, D. & Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 64, 967–978 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tauro, M., McGuire, J. & Lynch, C. C. New approaches to selectively target cancer-associated matrix metalloproteinase activity. Cancer Metastasis Rev. 33, 1043–1057 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turk, V. et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta Proteins Proteom. 1824, 68–88 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mijanović, O. et al. Cathepsin B: a sellsword of cancer progression. Cancer Lett. 449, 207–214 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maciewicz, R. A., Wotton, S. F., Etherington, D. J. & Duance, V. C. Susceptibility of the cartilage collagens types II, IX and XI to degradation by the cysteine proteinases, cathepsins B and L. FEBS Lett. 269, 189–193 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sevenich, L. et al. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30, 54–64 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dheer, D., Nicolas, J. & Shankar, R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv. Drug Deliv. Rev. 151-152, 130–151 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmood, N., Mihalcioiu, C. & Rabbani, S. A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front. Oncol. 8, 24 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noh, H., Hong, S. & Huang, S. Role of urokinase receptor in tumor progression and development. Theranostics 3, 487–495 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alpízar-Alpízar, W. et al. Urokinase plasminogen activator receptor is expressed in invasive cells in gastric carcinomas from high- and low-risk countries. Int. J. Cancer 126, 405–415 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Su, S.-C., Lin, C.-W., Yang, W.-E., Fan, W.-L. & Yang, S.-F. The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin. Ther. Targets 20, 551–566 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brglez, V., Lambeau, G. & Petan, T. Secreted phospholipases A2 in cancer: diverse mechanisms of action. Biochimie 107, 114–123 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brglez, V., Pucer, A., Pungerčar, J., Lambeau, G. & Petan, T. Secreted phospholipases A2 are differentially expressed and epigenetically silenced in human breast cancer cells. Biochem. Biophys. Res. Commun. 445, 230–235 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Imaging γ-Glutamyltranspeptidase for tumor identification and resection guidance via enzyme-triggered fluorescent probe. Biomaterials 179, 1–14 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • McAtee, C. O., Barycki, J. J. & Simpson, M. A. Chapter One – emerging roles for hyaluronidase in cancer metastasis and therapy. In: Advances in Cancer Research, 123 (eds. Simpson, M. A. & Heldin, P.) 1–34 (Academic Press, 2014).

  • Moradi, A., Srinivasan, S., Clements, J. & Batra, J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 38, 333–346 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, X.-F., Chen, Y. & Liu, Y. Enzyme-responsive protein/polysaccharide supramolecular nanoparticles. Soft Matter 11, 2488–2493 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E.-J. et al. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials 122, 83–90 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, J. & Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc. 135, 14056–14059 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo, R. & Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 19, 274–283 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater. Chem. Front. 1, 807–822 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnol. 16, 74 (2018).

    Article 

    Google Scholar
     

  • Huo, M., Yuan, J., Tao, L. & Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 5, 1519–1528 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Sci. Technol. Adv. Mater. 19, 771–790 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M., Du, H., Zhang, W. & Zhai, G. Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications. Mater. Sci. Eng. C. 71, 1267–1280 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Yang, F., Xiong, F. & Gu, N. The smart drug delivery system and its clinical potential. Theranostics 6, 1306–1323 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y.-J. & Matsunaga, Y. T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B 5, 4307–4321 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl. Mater. Interfaces 6, 8549–8559 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. J. & Matsunaga, Y. T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B 5, 4307–4321 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, H., Tang, Z., Zhuang, X., Chen, X. & Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progr. Poly. Sci. 37, 237–280 (2012).

  • Hou, W. et al. Photo-Responsive polymersomes as drug delivery system for potential medical applications. Molecules 25, 5147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Recent progress in drug delivery. Acta Pharm. Sin. B. 9, 1145–1162 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L., Qian, M. & Wang, J. Progress in research of photo-controlled drug delivery systems. Acta Chim. Sin. 75, 770–782 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L.-Q., Li, P., Cui, X.-W. & Dietrich, C. F. Ultrasound nanotheranostics in fighting cancer: advances and prospects. Cancer Lett. 470, 204–219 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham, S. H., Choi, Y. & Choi, J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics 12, 630 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. 624, 25–37 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chandan, R., Mehta, S. & Banerjee, R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomater. Sci. Eng. 6, 4731–4747 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguilar, A. A. et al. Permeabilizing cell membranes with electric fields. Cancers 13, 2283 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, P. M. et al. Electrically controlled drug delivery from biotin‐doped conductive polypyrrole. Adv. Mater. 18, 577–581 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Conjugated polymer for voltage‐controlled release of molecules. Adv. Mater. 29, 1701733 (2017).

    Article 

    Google Scholar
     

  • Yue, R. & Xu, J. Poly (3, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth. Met. 162, 912–917 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. Y., Li, Y. & Lee, D. S. Multifunctional and stimuli-responsive magnetic nanoparticle-based delivery systems for biomedical applications. Adv. Ther. 1, 1800011 (2018).

    Article 

    Google Scholar
     

  • Kobayashi, T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 6, 1342–1347 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Targeted inhibition of tumor inflammation and tumor-platelet crosstalk by nanoparticle-mediated drug delivery mitigates cancer metastasis. ACS Nano 16, 50–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. A tumor-specific MicroRNA recognition system facilitates the accurate targeting to tumor cells by magnetic nanoparticles. Mol. Ther. Nucleic Acids 5, e318 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semkina, A. S. et al. Magnetic resonance imaging of tumors with the use of iron oxide magnetic nanoparticles as a contrast agent. Bull. Exp. Biol. Med. 162, 808–811 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tietze, R. et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 468, 463–470 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estelrich, J., Escribano, E., Queralt, J. & Busquets, M. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 16, 8070–8101 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mertz, D., Sandre, O. & Begin-Colin, S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim. Biophys. Acta Gen. Subj. 1861, 1617–1641 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda, H. The 35th Anniversary of the Discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery—personal remarks and future prospects. J. Pers. Med. 11, 229 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDaid, W. J. et al. Repurposing of Cetuximab in antibody-directed chemotherapy-loaded nanoparticles in EGFR therapy-resistant pancreatic tumours. Nanoscale 11, 20261–20273 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. et al. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater. Sci. 9, 2279–2294 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirata, Y. et al. A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes. Int. J. Pharm. 607, 120966 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grinberg, O., Gedanken, A., Mukhopadhyay, D. & Patra, C. R. Antibody modified Bovine Serum Albumin microspheres for targeted delivery of anticancer agent Gemcitabine. Polym. Adv. Technol. 24, 294–299 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, M. et al. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact. Mater. 6, 1878–1909 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D., Liu, F., Liu, Z., Wang, L. & Zhang, N. Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm. 8, 2291–2301 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J. Control. Rel. 128, 209–216 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Niza, E. et al. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. Nanomaterials 9, 1793 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q., Wang, J. & Liu, H. Chemo-immune synergetic therapy of esophageal carcinoma: trastuzumab modified, cisplatin and fluorouracil co-delivered lipid–polymer hybrid nanoparticles. Drug Deliv. 27, 1535–1543 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L. et al. Discovery of pemigatinib: a potent and selective fibroblast growth factor receptor (FGFR) inhibitor. J. Med. Chem. 64, 10666–10679 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, J.-F., Caliri, A. W., Duex, J. E. & Theodorescu, D. Targetable pathways in advanced bladder cancer: FGFR signaling. Cancers 13, 4891 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hortelão, A. C., Carrascosa, R., Murillo-Cremaes, N., Patiño, T. & Sánchez, S. Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13, 429–439 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. P-glycoprotein antibody decorated porous hydrogel particles for capture and release of drug-resistant tumor cells. Adv. Healthc. Mater. 8, 1900136 (2019).

    Article 

    Google Scholar
     

  • Cho, H.-S. et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 4, 5398–5404 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vail, M. E. et al. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res. 74, 4470–4481 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, L. et al. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 25, 1634–1641 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, M., Zhang, H., Zheng, J. & Liu, Y. Glypican-3: a new target for diagnosis and treatment of hepatocellular carcinoma. J. Cancer 11, 2008–2021 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, X. et al. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv. 25, 1484–1494 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv. Mater. 27, 6848–6854 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics 10, 1181–1196 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hama, S., Sakai, M., Itakura, S., Majima, E. & Kogure, K. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem. Biophys. Rep. 27, 101067 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Z. et al. CD47-targeted bismuth selenide nanoparticles actualize improved photothermal therapy by increasing macrophage phagocytosis of cancer cells. Colloids Surf. B 184, 110546 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, N., Qin, Y., Liu, H. & Cheng, Z. Tumor-targeting peptides: ligands for molecular imaging and therapy. Anti Cancer Agents Med. Chem. 18, 74–86 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H. et al. In situ formation of nanotheranostics to overcome the blood–brain barrier and enhance treatment of orthotopic glioma. ACS Appl. Mater. Interfaces 12, 26880–26892 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, G., Jin, X., Zhang, S. & Xing, D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 144, 95–104 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Negishi, Y. et al. Development of a screening system for targeting carriers using peptide-modified liposomes and tissue sections. Biol. Pharm. Bull. 41, 1107–1111 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 20, 1637–1646 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, N.-n et al. Gadolinium-loaded calcium phosphate nanoparticles for magnetic resonance imaging of orthotopic hepatocarcinoma and primary hepatocellular carcinoma. Biomater. Sci. 8, 1961–1972 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Y.-Z. et al. Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials 33, 8858–8867 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chernenko, T. et al. Label-free Raman microspectral analysis for comparison of cellular uptake and distribution between nontargeted and EGFR-targeted biodegradable polymeric nanoparticles. Drug Deliv. Transl. Res. 3, 575–586 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q. et al. Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin. Int. J. Nanomed. 11, 5415–5427 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. J. Mater. Chem. 22, 14608–14616 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. A pH-sensitive T7 peptide-decorated liposome system for HER2 inhibitor extracellular delivery: an application for the efficient suppression of HER2+ breast cancer. J. Mater. Chem. B 9, 8768–8778 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L.-Y. et al. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials 35, 2066–2078 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Specific cell targeting with APRPG conjugated PEG–PLGA nanoparticles for treating ovarian cancer. Biomaterials 35, 983–992 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, L. et al. Cell-penetrating peptide-modified PLGA nanoparticles for enhanced nose-to-brain macromolecular delivery. Macromol. Res. 21, 435–441 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kanazawa, T., Taki, H., Tanaka, K., Takashima, Y. & Okada, H. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm. Res. 28, 2130–2139 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, L. et al. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials 182, 1–12 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, T. et al. Intracellular delivery of oxaliplatin conjugate via cell penetrating peptide for the treatment of colorectal carcinoma in vitro and in vivo. Int. J. Pharm. 606, 120904 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, J. D. et al. Therapeutic peptide delivery via aptamer-displaying, disulfide-linked peptide amphiphile micelles. Mol. Syst. Des. Eng. 5, 269–283 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z., Yan, Y., Wang, L., Zhang, Q. & Cheng, Y. Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy. Biomaterials 203, 63–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C., Uertz, J., Yohan, D. & Chithrani, B. D. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale 6, 12026–12033 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercier, M.-C., Dontenwill, M. & Choulier, L. Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 9, 69 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz-Toledo, J. et al. Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database 2012, bas006 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. & Li, G. Aptamers against cell surface receptors: selection, modification and application. Curr. Med. Chem. 18, 4107–4116 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lao, Y.-H., Phua, K. K. L. & Leong, K. W. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 9, 2235–2254 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lupold, S. E., Hicke, B. J., Lin, Y. & Coffey, D. S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen1. Cancer Res 62, 4029–4033 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int. J. Nanomed. 6, 1747–1756 (2011).

    CAS 

    Google Scholar
     

  • Baek, S. E. et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J. Control. Release 196, 234–242 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rockey, W. M. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic Acid Ther. 21, 299–314 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitzmann, S. et al. A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin. Cancer Res. 11, 139–146 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, H., Youn, H., Lee, S. & Ban, C. Ultra-effective photothermal therapy for prostate cancer cells using dual aptamer-modified gold nanostars. J. Mater. Chem. B 2, 4862–4867 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing, P. et al. Enhanced growth inhibition of prostate cancer in vitro and in vivo by a recombinant adenovirus-mediated dual-aptamer modified drug delivery system. Cancer Lett. 383, 230–242 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apostolopoulos, V., Stojanovska, L. & Gargosky, S. E. MUC1 (CD227): a multi-tasked molecule. Cell. Mol. Life Sci. 72, 4475–4500 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heublein, S. et al. Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ is an independent prognostic marker for breast cancer patients. J. Exp. Clin. Cancer Res. 34, 50 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. et al. Multivalent aptamer-modified tetrahedral DNA nanocage demonstrates high selectivity and safety for anti-tumor therapy. Nanoscale 11, 339–347 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D. & Trent, J. O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86, 151–164 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yazdian-Robati, R. et al. Therapeutic applications of AS1411 aptamer, an update review. Int. J. Biol. Macromol. 155, 1420–1431 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X. et al. Simple and efficient targeted intracellular protein delivery with self-assembled nanovehicles for effective cancer therapy. Adv. Funct. Mater. 29, 1906187 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liang, X. et al. Nucleolin-targeting AS1411 aptamer-modified micelle for the co-delivery of doxorubicin and miR-519c to improve the therapeutic efficacy in hepatocellular carcinoma treatment. Int. J. Nanomed. 16, 2569–2584 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lv, T. et al. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater. 76, 257–274 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 145, 56–71 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prebet, T. et al. The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood 116, 2315–2323 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Z. et al. Sgc8 aptamer targeted glutathione-responsive nanoassemblies containing Ara-C prodrug for the treatment of acute lymphoblastic leukemia. Nanoscale 11, 23000–23012 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heo, D., Ku, M., Kim, J.-H., Yang, J. & Suh, J.-S. Aptamer-modified magnetic nanosensitizer for in vivo MR imaging of HER2-expressing cancer. Nanoscale Res. Lett. 13, 288 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ara, M. N. et al. An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 35, 7110–7120 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luiz, M. T. et al. In vitro evaluation of folate-modified PLGA nanoparticles containing paclitaxel for ovarian cancer therapy. Mater. Sci. Eng. C. 105, 110038 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Luiz, M. T. et al. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment. Mater. Sci. Eng. C. 124, 112033 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl. Mater. Interfaces 13, 14577–14586 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, A., Kaur, C. D., Saraf, S. & Saraf, S. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy. J. Recept. Signal Transduct. 37, 314–323 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cui, S. et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7, 676–688 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tortorella, S. & Karagiannis, C. T. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems. Curr. Drug Deliv. 11, 427–443 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koneru, T. et al. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega 6, 8727–8733 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D.-z et al. The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomed. Nanotechnol. Biol. Med. 14, 991–1003 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hou, L., Shan, X., Hao, L., Feng, Q. & Zhang, Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater. 54, 307–320 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, L.-C. et al. Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5, 3931–3940 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, S., Zhu, X., Cao, C., Sun, J. & Liu, J. Transferrin modified ruthenium nanoparticles with good biocompatibility for photothermal tumor therapy. J. Colloid Interface Sci. 511, 325–334 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. A transferrin triggered pathway for highly targeted delivery of graphene-based nanodrugs to treat choroidal melanoma. Adv. Healthc. Mater. 7, 1800377 (2018).

    Article 

    Google Scholar
     

  • Upadhyay, P. et al. Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcinogenic effect in non-small cell lung carcinoma via the modulation of miR-34a and miR-16. Biomater. Sci. 7, 4325–4344 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt, B. et al. A natural history of botanical therapeutics. Metabolism 57, S3–S9 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, B. et al. Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials 280, 121302 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, Z. R. et al. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano 9, 1581–1591 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, A. L., McEntee, N., Holland, J. & Patel, A. Development and approval of rybelsus (oral semaglutide): ushering in a new era in peptide delivery. Drug Deliv. Transl. Res. 12, 1–6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 195727 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalepu, S. & Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B. 5, 442–453 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enzym. Inhib. Med. Chem. 25, 577–589 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Small-molecule prodrug nanoassemblies: an emerging nanoplatform for anticancer drug delivery. Small 17, 2101460 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Cui, H., Zhang, R., Zhang, H. & Huang, W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv. Sci. 8, 2101454 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Multifunctioning pH-responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug delivery. AIChE J. 54, 2979–2989 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Yin Win, K. & Feng, S.-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005).

    Article 

    Google Scholar
     

  • Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turecek, P. L., Bossard, M. J., Schoetens, F. & Ivens, I. A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barenholz, Y. Doxil® — the first FDA-approved nano-drug: Lessons learned. J. Control. Rel. 160, 117–134 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rask-Andersen, M., Masuram, S. & Schiöth, H. B. The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. 54, 9–26 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lau, J. L. & Dunn, M. K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 26, 2700–2707 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, D., Liu, D., Zhang, L. & Sun, L. Self-assembled fluorescent tripeptide nanoparticles for bioimaging and drug delivery applications. Chin. Chem. Lett. 31, 3195–3199 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bruno, B. J., Miller, G. D. & Lim, C. S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 4, 1443–1467 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, J. et al. In vivo stability of therapeutic proteins. Pharm. Res. 37, 23 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, W. et al. Self-assembly of an antitumor dipeptide induced near-infrared fluorescence and improved stability for theranostic applications. ACS Appl. Mater. Interfaces 13, 32799–32809 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jevševar, S., Kunstelj, M. & Porekar, V. G. PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Varela-Moreira, A. et al. Polymeric micelles loaded with carfilzomib increase tolerability in a humanized bone marrow-like scaffold mouse model. Int. J. Pharm. 2, 100049 (2020).

    CAS 

    Google Scholar
     

  • Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article 

    Google Scholar
     

  • Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morales, J. O. et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 19, 652–668 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, W. R. et al. Abiraterone decanoate (AD): Potent and long-acting activity of a novel intramuscular (IM) abiraterone prodrug depot in a castrate monkey model. J. Clin. Oncol. 39, 78–78 (2021).

    Article 

    Google Scholar
     

  • Opalinska, J. B. & Gewirtz, A. M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. 1, 503–514 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Hoecke, L. & Roose, K. How mRNA therapeutics are entering the monoclonal antibody field. J. Transl. Med. 17, 54 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaczmarek, J. C., Kowalski, P. S. & Anderson, D. G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 9, 60 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kormann, M. S. D. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endoh, T. & Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 61, 704–709 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friend, D. S., Papahadjopoulos, D. & Debs, R. J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta Biomembr. 1278, 41–50 (1996).

    Article 

    Google Scholar
     

  • Zelphati, O. & Szoka, F. C. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA 93, 11493–11498 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Rel. 114, 100–109 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta Biomembr. 1510, 152–166 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palucka, K. & Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 39, 38–48 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenette, P. S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Prasad, V. Tisagenlecleucel — the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheever, M. A. & Higano, C. S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res 17, 3520–3526 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volkman, R. & Offen, D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35, 1867–1880 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, C. et al. Engineering nano-therapeutics to boost adoptive cell therapy for cancer treatment. Small Methods 5, 2001191 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, C., Tang, Z., Tian, H. & Chen, X. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev. 98, 64–76 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L., Hu, Y. & Zhang, L. Recent trends in nanocrystals for pharmaceutical applications. Curr. Pharm. Des. 24, 2394–2402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. X., Wong, H. L., Xue, H. Y., Eoh, J. Y. & Wu, X. Y. Nanomedicine of synergistic drug combinations for cancer therapy – strategies and perspectives. J. Control. Rel. 240, 489–503 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. & Huang, Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med. Drug Discov. 6, 100024 (2020).

    Article 

    Google Scholar
     

  • Nastiuk, K. L. & Krolewski, J. J. Opportunities and challenges in combination gene cancer therapy. Adv. Drug Deliv. Rev. 98, 35–40 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaaks, P. et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 603, 166–173 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, P., Chen, X., Zhang, H., Wei, Q. & Luo, K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin. Cancer Biol. 89, 61–75 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahara, K. Pharmaceutical formulation and manufacturing using particle/powder technology for personalized medicines. Adv. Powder Technol. 31, 387–392 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, T. et al. Unmanned aerial vehicle mediated drug delivery for first aid. Adv. Mater. 35, 2208648 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Adir, O. et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, 1901989 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, M. et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng. 6, 267–275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ando, K., Mori, K., Corradini, N., Redini, F. & Heymann, D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin. Pharmacother. 12, 285–292 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dicko, A., Kwak, S., Frazier, A. A., Mayer, L. D. & Liboiron, B. D. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int. J. Pharm. 391, 248–259 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunetti, C., Anelli, L., Zagaria, A., Specchia, G. & Albano, F. CPX-351 in acute myeloid leukemia: can a new formulation maximize the efficacy of old compounds? Expert Rev. Hematol. 10, 853–862 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, T. C. et al. Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother. Pharmacol. 75, 579–586 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortes, J. E. et al. Phase II, multicenter, randomized trial of CPX‐351 (cytarabine: daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 121, 234–242 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers. J. Biomed. Opt. 15, 58002 (2010).

    Article 

    Google Scholar
     

  • Chen, H. et al. DUP1 peptide modified micelle efficiently targeted delivery paclitaxel and enhance mitochondrial apoptosis on PSMA-negative prostate cancer cells. SpringerPlus 5, 362 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu, W. et al. Promoting early diagnosis and precise therapy of hepatocellular carcinoma by glypican-3-targeted synergistic chemo-photothermal theranostics. ACS Appl. Mater. Interfaces 11, 23591–23604 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, N. et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood–brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomed. Nanotechnol. Biol. Med. 13, 83–93 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jang, H. J., Jeong, E. J. & Lee, K. Y. Carbon dioxide-generating PLG nanoparticles for controlled anti-cancer drug delivery. Pharm. Res. 35, 59 (2018).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    10FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: