Sunday, February 25, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications – Bone Research


  • Hawker, G. A. Osteoarthritis is a serious disease. Clin. Exp. Rheumatol. 37 (Suppl 120), 3–6 (2019).

    PubMed 

    Google Scholar
     

  • Leifer, V. P., Katz, J. N. & Losina, E. The burden of OA-health services and economics. Osteoarthr. Cartil. 30, 10–16 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A. & Lohmander, L. S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr. Cartil. 23, 1233–1241 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Felson, D. T. et al. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 30, 914–918 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jordan, J. M. et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J. Rheumatol. 34, 172–180 (2007).

    PubMed 

    Google Scholar
     

  • Primorac, D. et al. Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes 11, 854 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Associations of dietary macroelements with knee joint structures, symptoms, quality of life, and comorbid conditions in people with symptomatic knee osteoarthritis. Nutrients 14, 3576 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cicuttini, F. M. & Wluka, A. E. Osteoarthritis: is OA a mechanical or systemic disease? Nat. Rev. Rheumatol. 10, 515–516 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kreitmaier, P., Katsoula, G. & Zeggini, E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet. 39, 46–58 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kellgren, J. H. & Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrotin, Y. Osteoarthritis in year 2021: biochemical markers. Osteoarthr. Cartil. 30, 237–248 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Siaton, B. C., Hogans, B. H. & Hochberg, M. C. Precision medicine in osteoarthritis: not yet ready for prime time. Expert Rev. Precis. Med. Drug Dev. 6, 5–8 (2021).

    Article 

    Google Scholar
     

  • Sawitzke, A. D. Personalized medicine for osteoarthritis: where are we now? Ther. Adv. Musculoskelet. Dis. 5, 67–75 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, X., Wu, X., Crawford, R., Xiao, Y. & Prasadam, I. Macro, micro, and molecular. changes of the osteochondral interface in osteoarthritis development. Front. Cell Dev. Biol. 9, 659654 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann, G. O. et al. Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17, 1–8 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sarin, J. K. et al. Dataset on equine cartilage near infrared spectra, composition, and functional properties. Sci. Data 6, 164 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamsjaeger, S., Klaushofer, K. & Paschalis, E. P. Raman analysis of proteoglycans simultaneously in bone and cartilage. J. Raman Spectrosc. 45, 794–800 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eveque-Mourroux, M. R., Rocha, B., Barré, F. P. Y., Heeren, R. M. A. & Cillero-Pastor, B. Spatially resolved proteomics in osteoarthritis: state of the art and new perspectives. J. Proteom. 215, 103637 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Carlberg, K. et al. Exploring inflammatory signatures in arthritic joint biopsies with spatial transcriptomics. Sci. Rep. 9, 18975 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cillero-Pastor, B., Eijkel, G. B., Blanco, F. J. & Heeren, R. M. A. Protein classification and distribution in osteoarthritic human synovial tissue by matrix-assisted laser desorption ionization mass spectrometry imaging. Anal. Bioanal. Chem. 407, 2213–2222 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton, B. R. et al. Mapping enzyme activity on tissue by functional mass spectrometry imaging. Angew. Chem. Int. Ed. 59, 3855–3858 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. A technique for preparing undecalcified osteochondral fresh frozen sections for elemental mapping and understanding disease etiology. Histochem. Cell Biol. 158, 463–469 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolz, M. et al. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat. Nanotechnol. 4, 186–192 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, G. et al. Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP. Nat. Commun. 12, 3241 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14, 57–60 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl. Acad. Sci. USA 117, 33455–33465 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. R. et al. Mass spectrometry imaging as a potential tool to investigate human osteoarthritis at the tissue level. Int. J. Mol. Sci. 21, 6414 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afara, I. O. et al. Characterization of connective tissues using near-infrared spectroscopy and imaging. Nat. Protoc. 16, 1297–1329 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, C., Zhao, B., Li, Y., Zang, H. & Li, L. Vibrational spectroscopy in assessment of early osteoarthritis-a narrative review. Int. J. Mol. Sci. 22, 5235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, M. J. et al. Using fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, M. C., Nascimento, Y. M., Araújo, J. M. & Lima, K. M. ATR-FTIR spectroscopy coupled with multivariate analysis techniques for the identification of DENV-3 in different concentrations in blood and serum: a new approach. RSC Adv. 7, 25640–25649 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spahn, G. et al. Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study. Am. J. Sports Med. 38, 2516–2521 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Afara, I. O. et al. Near infrared spectroscopy for rapid determination of Mankin score components: a potential tool for quantitative characterization of articular cartilage at surgery. Arthroscopy 30, 1146–1155 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Huck, C. W., Ozaki, Y. & Huck-Pezzei, V. A. Critical review upon the role and potential of fluorescence and near-infrared imaging and absorption spectroscopy in cancer related cells, serum, saliva, urine and tissue analysis. Curr. Med. Chem. 23, 3052–3077 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laimer, J. et al. Amalgam tattoo versus melanocytic neoplasm—differential diagnosis of dark pigmented oral mucosa lesions using infrared spectroscopy. PLoS One 13, e0207026 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palukuru, U. P. et al. Near infrared spectroscopic imaging assessment of cartilage composition: validation with mid infrared imaging spectroscopy. Anal. Chim. Acta 926, 79–87 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afara, I. O., Prasadam, I., Arabshahi, Z., Xiao, Y. & Oloyede, A. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy. Sci. Rep. 7, 11463 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afara, I. O. et al. Machine learning classification of articular cartilage integrity using near infrared spectroscopy. Cell Mol. Bioeng. 13, 219–228 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maddams, W. & Willis, H. The Principles and Applications of Mathematical Peak Finding Procedures in Vibrational Spectra. Vol. 0917 SIR (SPIE, 1988).

  • Tiernan, H., Byrne, B. & Kazarian, S. G. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 241, 118636 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunaciu, A. A., Hoang, V. D. & Aboul-Enein, H. Y. Vibrational micro-spectroscopy of human tissues analysis: review. Crit. Rev. Anal. Chem. 47, 194–203 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Oinas, J. et al. Imaging of osteoarthritic human articular cartilage using fourier transform infrared microspectroscopy combined with multivariate and univariate analysis. Sci. Rep. 6, 30008 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, Z.-H., Zhang, X.-X., Wu, Y.-C., Yin, J.-H. & Xia, Y. Fourier transform infrared microscopic imaging and fisher discriminant analysis for identification of healthy and degenerated articular cartilage. Chin. J. Anal. Chem. 43, 518–522 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-X., Yin, J.-H., Mao, Z.-H. & Xia, Y. Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis. J. Biomed. Opt. 20, 060501 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, Z.-H., Wu, Y.-C., Zhang, X.-X., Gao, H. & Yin, J.-H. Comparative study on identification of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and chemometrics methods. J. Innov. Opt. Health Sci. 10, 1650054 (2017).

    Article 

    Google Scholar
     

  • Rieppo, L. et al. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarthr. Cartil. 20, 451–459 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rieppo, L., Saarakkala, S., Jurvelin, J. S. & Rieppo, J. Optimal variable selection for Fourier transform infrared spectroscopic analysis of articular cartilage composition. J. Biomed. Opt. 19, 027003 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yin, J., Xia, Y. & Xiao, Z. Comparison of macromolecular component distributions in osteoarthritic and healthy cartilages by fourier transform infrared imaging. J. Innov. Opt. Health Sci. 06, 1350048 (2013).

    Article 

    Google Scholar
     

  • David-Vaudey, E. et al. Fourier transform infrared Imaging of focal lesions in human osteoarthritic cartilage. Eur. Cell Mater. 10, 51–60 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das Gupta, S. et al. Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: a pilot study. Acta Biomaterialia 106, 145–155 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stack, J. & McCarthy, G. M. Cartilage calcification and osteoarthritis: a pathological association? Osteoarthr. Cartil. 28, 1301–1302 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bergholt, M. S. et al. Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage. ACS Cent. Sci. 2, 885–895 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albro, M. B. et al. Raman spectroscopic imaging for quantification of depth-dependent and local heterogeneities in native and engineered cartilage. NPJ Regen. Med 3, 3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaifulina, R. et al. Intra-operative Raman spectroscopy and ex vivo Raman mapping for assessment of cartilage degradation. Clin. Spectrosc. 3, 100012 (2021).

    Article 

    Google Scholar
     

  • Kerns, J. G. et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheumatol. 66, 1237–1246 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bocsa, C. D. et al. Knee osteoarthritis grading by resonant Raman and surface-enhanced Raman scattering (SERS) analysis of synovial fluid. Nanomedicine 20, 102012 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casal-Beiroa, P., González, P., Blanco, F. J. & Magalhães, J. Molecular analysis of the destruction of articular joint tissues by Raman spectroscopy. Expert Rev. Mol. Diagn. 20, 789–802 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, C. et al. Molecular network strategy in multi-omics and mass spectrometry imaging. Curr. Opin. Chem. Biol. 70, 102199 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, X. et al. A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues. Immunology 170, 401–418 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Q. et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann. Rheum. Dis. 78, 100–110 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Knee fibrosis is associated with the development of osteoarthritis in a murine model of tibial compression. J. Orthop. Res. 39, 1030–1040 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sanjurjo-Rodríguez, C. et al. Characterization and miRNA profiling of extracellular vesicles from human osteoarthritic subchondral bone multipotential stromal cells (MSCs). Stem Cells Int. 2021, 7232773 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e1721 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulzhanova, G., Hansen, V., Shammas, H., Reuter, J. M. & Wu, C. L. Spatial transcriptomics reveal unique molecular fingerprints of chondrogenesis during embryonic limb development. Osteoarthr. Cartil. 30, S49–S50 (2022).

    Article 

    Google Scholar
     

  • Vickovic, S. et al. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun. Biol. 5, 129 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reuter, J. et al. Poster 116: integrated scRNA-seq and spatial transcriptomics analysis uncovers distinct cellular populations and transcriptomes in human hip synovium between patients with femoroacetabular impingement and osteoarthritis. Orthop. J. Sports Med. 11, https://doi.org/10.1177/2325967123s00106 (2023).

  • Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamoto’s film method (2020). Methods Mol. Biol. 2230, 259–281 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angel, P. M., Mehta, A., Norris-Caneda, K. & Drake, R. R. in Tissue Proteomics: Methods and Protocols (eds Minnie M. Sarwal & Tara K. Sigdel) 225–241 (Springer New York, 2018).

  • Cillero-Pastor, B. & Heeren, R. M. Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J. Proteome Res. 13, 325–335 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, K. S. M. et al. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthr. Cartil. 29, 235–247 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cillero-Pastor, B., Eijkel, G. B., Kiss, A., Blanco, F. J. & Heeren, R. M. Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. Arthritis Rheum. 65, 710–720 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuhashi, T. et al. Alteration of N-glycans related to articular cartilage deterioration after anterior cruciate ligament transection in rabbits. Osteoarthr. Cartil. 16, 772–778 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Briggs, M. T. et al. MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics 16, 1736–1741 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bien, T., Bessler, S., Dreisewerd, K. & Soltwisch, J. Transmission-mode MALDI mass spectrometry imaging of single cells: optimizing sample preparation protocols. Anal. Chem. 93, 4513–4520 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 110, 11982–11987 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomeli, G., Bosse, M., Bendall, S. C., Angelo, M. & Herr, A. E. Multiplexed ion beam imaging readout of single-cell immunoblotting. Anal. Chem. 93, 8517–8525 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rost, S. et al. Multiplexed ion beam imaging analysis for quantitation of protein expression in cancer tissue sections. Lab. Investig. 97, 992–1003 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. et al. Single-cell profiling of microenvironment components by spatial localization in pancreatic ductal adenocarcinoma. Theranostics 12, 4980–4992 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillert, R. et al. Large molecular systems landscape uncovers T cell trapping in human skin cancer. Sci. Rep. 6, 19012 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swinnen, J. V. & Dehairs, J. A beginner’s guide to lipidomics. Biochemist. 44, 20–24 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, K. & Han, X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 41, 954–969 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villalvilla, A., Gómez, R., Largo, R. & Herrero-Beaumont, G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int. J. Mol. Sci. 14, 20793–20808 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cillero-Pastor, B., Eijkel, G., Kiss, A., Blanco, F. J. & Heeren, R. M. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal. Chem. 84, 8909–8916 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocha, B. et al. Identification of a distinct lipidomic profile in the osteoarthritic synovial membrane by mass spectrometry imaging. Osteoarthr. Cartil. 29, 750–761 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eveque-Mourroux, M. R. et al. Heterogeneity of lipid and protein cartilage profiles associated with human osteoarthritis with or without type 2 diabetes mellitus. J. Proteome Res. 20, 2973–2982 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haartmans, M. J. J. et al. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals potential lipid markers between infrapatellar fat pad biopsies of osteoarthritis and cartilage defect patients. Anal. Bioanal. Chem. 415, 5997–6007 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urita, A. et al. Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage. Arthritis Rheum. 63, 3428–3438 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heijs, B. et al. Multimodal mass spectrometry imaging of N-glycans and proteins from the same tissue section. Anal. Chem. 88, 7745–7753 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, R. L. Degradative enzymes in osteoarthritis. Front. Biosci. 4, D704–D712 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meszaros, E. & Malemud, C. J. Prospects for treating osteoarthritis: enzyme-protein interactions regulating matrix metalloproteinase activity. Ther. Adv. Chronic Dis. 3, 219–229 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, O., Haeckel, A., Reimer, U., Nebrich, G. & Schellenberger, E. Multiplex enzyme activity imaging by MALDI-IMS of substrate library conversions. Sci. Rep. 10, 15522 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, X. et al. Functional mass spectrometry imaging maps phospholipase-A2 enzyme activity during osteoarthritis progression. Theranostics 13, 4636–4649 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, C. S., Loeser, R. F., Purser, C. B., Gardin, J. F. & Jerome, C. P. Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease. J. Bone Min. Res. 11, 1209–1217 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. The deterioration of calcified cartilage integrity reflects the severity of osteoarthritis—a structural, molecular, and biochemical analysis. FASEB j. 36, e22142 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hackett, M. J. et al. Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis. Analyst 136, 2941–2952 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo, Q. et al. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone. BMC Musculoskelet. Disord. 17, 367 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sindhupakorn, B., Thienpratharn, S. & Kidkhunthod, P. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques. J. Mol. Struct. 1146, 254–258 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jung, Y.-K. et al. Calcium-phosphate complex increased during subchondral bone remodeling affects earlystage osteoarthritis. Sci. Rep. 8, 487 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry—a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol. Biochem. 39, 1835–1850 (2007).

    Article 
    CAS 

    Google Scholar
     

  • de Rezende, M. U. & de Campos, G. C. Is osteoarthritis a mechanical or inflammatory disease? Rev. Bras. Ortop. 48, 471–474 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin, T. M. & Guilak, F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33, 195–200 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Dall’Ara, E., Ohman, C., Baleani, M. & Viceconti, M. Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis. J. Biomech. 44, 1593–1598 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Gardner-Morse, M. G., Tacy, N. J., Beynnon, B. D. & Roemhildt, M. L. In situ microindentation for determining local subchondral bone compressive modulus. J. Biomech. Eng. 132, 094502 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, G. J. & Morgan, E. F. Use of microindentation to characterize the mechanical properties of articular cartilage: comparison of biphasic material properties across length scales. Osteoarthr. Cartil. 18, 1051–1057 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Marchi, G. et al. Fiberoptic microindentation technique for early osteoarthritis diagnosis: an in vitro study on human cartilage. Biomed. Microdevices 21, 11 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartmann, B. et al. Early detection of cartilage degeneration: a comparison of histology, fiber Bragg grating-based micro-indentation, and atomic force microscopy-based nano-indentation. Int. J. Mol. Sci. 21, 7384 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Etoricoxib decreases subchondral bone mass and attenuates biomechanical properties at the early stage of osteoarthritis in a mouse model. Biomed. Pharmacother. 127, 110144 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ihnatouski, M., Pauk, J., Karev, B. & Karev, D. Nanomechanical properties of articular cartilage due to the PRP injection in experimental osteoarthritis in rabbits. Molecules 25, 3734 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleischhauer, L. et al. Nano-scale mechanical properties of the articular cartilage zones in a mouse model of post-traumatic osteoarthritis. Appl. Sci. 12, 2596 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Tschaikowsky, M. et al. Hybrid fluorescence-AFM explores articular surface degeneration in early osteoarthritis across length scales. Acta Biomater. 126, 315–325 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kooijman, P. C. et al. Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches. Sci. Rep. 9, 8 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poad, B. L. et al. Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. J. Am. Soc. Mass Spectrom. 21, 1989–1999 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haartmans, M. J. J. et al. Mass spectrometry-based biomarkers for knee osteoarthritis: a systematic review. Expert Rev. Proteom. 18, 693–706 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Serowoky, M. A., Patel, D. D., Hsieh, J. W. & Mariani, F. V. The use of commercially available adhesive tapes to preserve cartilage and bone tissue integrity during cryosectioning. Biotechniques 65, 191–196 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piehowski, P. D. et al. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 8 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, S. R. et al. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat. Methods 15, 515–518 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tortorella, S. et al. LipostarMSI: comprehensive, vendor-neutral software for visualization, data analysis, and automated molecular identification in mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 31, 155–163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bond, N. J., Koulman, A., Griffin, J. L. & Hall, Z. massPix: an R package for annotation and interpretation of mass spectrometry imaging data for lipidomics. Metabolomics 13, 128 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janda, M. et al. Determination of abundant metabolite matrix adducts illuminates the dark metabolome of MALDI-Mass spectrometry imaging datasets. Anal. Chem. 93, 8399–8407 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khader, A. & Alquran, H. Automated prediction of osteoarthritis level in human osteochondral tissue using histopathological images. Bioengineering 10, 764 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neubauer, M. et al. Artificial-intelligence-aided radiographic diagnostic of knee osteoarthritis leads to a higher association of clinical findings with diagnostic ratings. J. Clin. Med. 12, 744 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calivà, F. et al. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat. Rev. Rheumatol. 18, 112–121 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, K. & Park, H. Machine-learning models predicting osteoarthritis associated with the lead blood level. Environ. Sci. Pollut. Res. Int. 28, 44079–44084 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lourido, L. et al. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis. J. Proteome Res. 13, 6096–6106 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boris Chan, P. M., Zhu, L., Wen, C. Y. & Chiu, K. Y. Subchondral bone proteomics in osteoarthritis: current status and perspectives. J. Orthop. Transl. 3, 71–77 (2015).


    Google Scholar
     

  • Ali, N. et al. Proteomics profiling of human synovial fluid suggests increased protein interplay in early-osteoarthritis (OA) that is lost in late-stage OA. Mol. Cell Proteom. 21, 100200 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Uniprot Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480-D489 (2021).

  • McDonnell, L. A., Walch, A., Stoeckli, M. & Corthals, G. L. MSiMass list: a public database of identifications for protein MALDI MS imaging. J. Proteome Res. 13, 1138–1142 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maier, S. K. et al. Comprehensive identification of proteins from MALDI imaging. Mol. Cell. Proteom. 12, 2901–2910 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50(Suppl), S9–S14 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taguchi, R., Nishijima, M. & Shimizu, T. Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol. 432, 185–211 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasugi, E. & Watanabe, K. LIPIDBANK for Web, the newly developed lipid database. Tanpakushitsu Kakusan Koso 47, 837–841 (2002).

    PubMed 

    Google Scholar
     

  • Wishart, D. S. et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 50, D622–d631 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–d617 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajed, T. et al. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495–D501 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mobasheri, A., Kapoor, M., Ali, S. A., Lang, A. & Madry, H. The future of deep phenotyping in osteoarthritis: how can high throughput omics technologies advance our understanding of the cellular and molecular taxonomy of the disease? Osteoarthr. Cartil. Open 3, 100144 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann. Rheum. Dis. 79, 811–818 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Papathanasiou, I., Anastasopoulou, L. & Tsezou, A. Cholesterol metabolism related genes in osteoarthritis. Bone 152, 116076 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cannata, F. et al. Osteoarthritis and type 2 diabetes: from pathogenetic factors to therapeutic intervention. Diabetes Metab. Res Rev. 36, e3254 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Linus, A. et al. Visible and near-infrared spectroscopy enables differentiation of normal and early osteoarthritic human knee joint articular cartilage. Ann. Biomed. Eng. 51, 2245–2257 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarin, J. K. et al. Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo. Sci. Rep. 8, 13409 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Souza, R. A. et al. Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med. Sci. 29, 797–804 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, D. T., van Horssen, P., Derriks, H., van de Giessen, M. & van Leeuwen, T. Autofluorescence imaging for improved visualization of joint structures during arthroscopic surgery. J. Exp. Orthop. 4, 19 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818.e4717 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bay-Jensen, A. C., Mobasheri, A., Thudium, C. S., Kraus, V. B. & Karsdal, M. A. Blood and urine biomarkers in osteoarthritis—an update on cartilage associated type II collagen and aggrecan markers. Curr. Opin. Rheumatol. 34, 54–60 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirzaii-Dizgah, M. R., Mirzaii-Dizgah, M. H., Mirzaii-Dizgah, I., Karami, M. & Forogh, B. Osteoprotegerin changes in saliva and serum of patients with knee osteoarthritis. Rev. Esp. Cir. Ortop. Traumatol. 66, 47–51 (2022).

    PubMed 

    Google Scholar
     

  • Mirzaii-Dizgah, M. R., Mirzaii-Dizgah, M. H. & Mirzaii-Dizgah, I. Elevation of urate in saliva and serum of patients with knee osteoarthritis. Gerontology 67, 87–90 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwaiger-Haber, M. et al. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem. Nat. Commun. 14, 2876 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barré, F. P. et al. Distribution, quantification and effects of triamcinolone acetonide in human osteoarthritic cartilage. Osteoarthr. Cartil. 26, S284–S285 (2018).

    Article 

    Google Scholar
     

  • Barré, F. P. Y. et al. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal. Chem. 91, 10840–10848 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeley, E. H. & Caprioli, R. M. 3D imaging by mass spectrometry: a new frontier. Anal. Chem. 84, 2105–2110 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanekoff, I. et al. Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 407, 2063–2071 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratneswaran, A., Rockel, J. S. & Kapoor, M. Understanding osteoarthritis pathogenesis: a multiomics system-based approach. Curr. Opin. Rheumatol. 32, 80–91 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jackson, M., Wagnieres, G. & Mantsch, H. H. in Encyclopedia of Spectroscopy and Spectrometry (Third Edition) (eds John C. Lindon, George E. Tranter, & David W. Koppenaal) 479–487 (Academic Press, 2017).

  • Afara, I. O., Moody, H., Singh, S., Prasadam, I. & Oloyede, A. Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy. Biomed. Opt. Express 6, 144–154 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lasch, P. & Naumann, D. Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim. Biophys. Acta (BBA) – Biomembr. 1758, 814–829 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Bodzon-Kulakowska, A. & Suder, P. Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Spectrom. Rev. 35, 147–169 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kriegsmann, M. et al. MALDI MS imaging as a powerful tool for investigating synovial tissue. Scand. J. Rheumatol. 41, 305–309 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elaldi, R. et al. High dimensional imaging mass cytometry panel to visualize the tumor immune microenvironment contexture. Front. Immunol. 12, 666233 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, B., Cillero-Pastor, B., Ruiz-Romero, C., Heeren, R. & Blanco, F. MALDI-MSI analysis revealed an increment of lipid candidate biomarkers in oa synovium. Osteoarthr. Cartil. 26, S41–S42 (2018).

    Article 

    Google Scholar
     

  • Eveque-Mourroux, M. R. et al. Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 144, 5953–5958 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Turyanskaya, A. et al. Correlation of μXRF and LA-ICP-MS in the analysis of a human bone-cartilage sample. J. Anal. At. Spectrom. 36, 1512–1523 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles