Sunday, March 3, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens – Scientific Reports


  • Kuttappan, V. A., Hargis, B. M. & Owens, C. M. White striping and woody breast myopathies in the modern poultry industry: A review. Poult. Sci. 95, 2724–2733 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z., Brannick, E. & Abasht, B. Integrative transcriptomic and metabolomic analysis reveals alterations in energy metabolism and mitochondrial functionality in broiler chickens with wooden breast. Sci. Rep. 13, 4747 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutryn, M. F., Brannick, E. M., Fu, W., Lee, W. R. & Abasht, B. Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genom. 16, 399 (2015).

    Article 

    Google Scholar
     

  • Abasht, B., Mutryn, M. F., Michalek, R. D. & Lee, W. R. Oxidative stress and metabolic perturbations in wooden breast disorder in chickens. PLoS One 11, e0153750 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malila, Y. et al. Insights into transcriptome profiles associated with wooden breast myopathy in broilers slaughtered at the age of 6 or 7 weeks. Front. Physiol. 12, 691194 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottje, W. G. et al. Upstream regulator analysis of wooden breast myopathy proteomics in commercial broilers and comparison to feed efficiency proteomics in pedigree male broilers. Foods 10(1), 104 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, K. et al. Multi-omics analysis of the microbiome and metabolome reveals the relationship between the gut Microbiota and wooden breast myopathy in broilers. Front. Vet. Sci. 9, 922516 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • D’Ercole, C. et al. Spatially resolved transcriptomics reveals innervation-responsive functional clusters in skeletal muscle. Cell Rep. 41, 111861 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, G. et al. Zebrafish danio rerio myotomal muscle structure and growth from a spatial transcriptomics perspective. Genomics 114, 110477 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ruoss, S. et al. Spatial transcriptomics tools allow for regional exploration of heterogeneous muscle pathology in the pre-clinical rabbit model of rotator cuff tear. J. Orthop. Surg. Res. 17, 440 (2022).

    Article 

    Google Scholar
     

  • Papah, M. B., Brannick, E. M., Schmidt, C. J. & Abasht, B. Evidence and role of phlebitis and lipid infiltration in the onset and pathogenesis of Wooden Breast Disease in modern broiler chickens. Avian Pathol. 46, 623–643 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic Murine models. Circ. Res. 123, 1127–1142 (2018).


    Google Scholar
     

  • Javadifar, A. et al. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci. 22, 2529 (2021).


    Google Scholar
     

  • Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H., & Evans, R. M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 93, 229–240 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Hou, X. et al. Lipid uptake by alveolar macrophages drives fibrotic responses to silica dust. Sci. Rep. 9, 399 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, A., Brunner, J. S., Hajto, A., Sharif, O. & Schabbauer, G. Lipid scavenging macrophages and inflammation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867, 159066 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rader, D. J., & Puré, E. Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell? Cell Metab. 1, 223–230 (2005)

    Article 
    PubMed 

    Google Scholar
     

  • van Eijk, M. & Aerts, J. M. F. G. The Unique Phenotype of Lipid-Laden Macrophages. Int. J. Mol. Sci. 22 (2021).

  • Yu, X.-H., Fu, Y.-C., Zhang, D.-W., Yin, K. & Tang, C.-K. Foam cells in atherosclerosis. Clin. Chim. Acta. 424, 245–252 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Iso, T. et al. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler. Thromb. Vasc. Biol. 33, 2549–2557 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuhashi, M., Saitoh, S., Shimamoto, K. & Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 8, 23–33 (2014).

    PubMed 

    Google Scholar
     

  • Miyazaki, M., Kim, Y. C., Gray-Keller, M. P., Attie, A. D., & Ntambi, J. M. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-coa desaturase 1. J. Biol. Chem. 275, 30132–30138 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Hung, Y.-H., Carreiro, A. L. & Buhman, K. K. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1862, 600–614 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, R. et al. Dominant changes in the breast muscle lipid profiles of broiler chickens with wooden breast syndrome revealed by lipidomics analyses. J. Anim. Sci. Biotechnol. 13, 93 (2022).


    Google Scholar
     

  • Wang, Z., Özçam, M. & Abasht, B. 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency. PloS One 17, 0269534 (2022).


    Google Scholar
     

  • Chen, Y. et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ. Res. 125, 1087–1102 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brasaemle, D. L. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 48, 2547–2559 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Brothers, B., Zhuo, Z., Papah, M. B. & Abasht, B. RNA-seq analysis reveals spatial and sex differences in pectoralis major muscle of broiler chickens contributing to difference in susceptibility to wooden Breast Disease. Front. Physiol. 10, 764 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J.Immunol. 177, 7303–7311 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Guerrini, V., & Gennaro, M. L. Foam cells: one size doesn’t fit all. Trends Immunol. 40, 1163–1179 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Eck, M., Zimmermann, R., Groot, P. H., Zechner, R. & Van Berkel, T. J. Role of macrophage-derived lipoprotein lipase in lipoprotein metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, E53–62 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Csapo R, Gumpenberger M, Wessner B. Skeletal muscle extracellular matrix – what do we know about its composition, regulation, and physiological roles? A narrative review. Front Physiol 11, 253. https://doi.org/10.3389/fphys.2020.00253 (2020).

    Article 

    Google Scholar
     

  • Papah, M. B., Brannick, E. M., Schmidt, C. J., & Abasht, B. Gene expression profiling of the early pathogenesis of wooden breast disease in commercial broiler chickens using rna-sequencing. PLoS One. 13, 0207346 (2018).

    Article 

    Google Scholar
     

  • Chiquet, M., Birk, D. E., Bönnemann, C. G. & Koch, M. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 53, 51–54 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marro, J., Pfefferli, C., de Preux Charles, A.-S., Bise, T. & Jaźwińska, A. Collagen XII contributes to epicardial and connective tissues in the zebrafish heart during ontogenesis and regeneration. PLoS One 11, e0165497 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Y. et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum. Mol. Genet. 23, 2339–2352 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gragnano, F. et al. The role of von Willebrand factor in vascular inflammation: From pathogenesis to targeted therapy. Mediators Inflamm. 2017, 1–13 (2017).

    Article 

    Google Scholar
     

  • Manz, X. D., Bogaard, H. J. & Aman, J. Regulation of VWF (Von Willebrand factor) in inflammatory thrombosis. Arterioscler. Thromb. Vasc. Biol. 42, 1307–1320 (2022).

  • Ozawa, K. et al. Proteolysis of Von Willebrand factor influences inflammatory endothelial activation and vascular compliance in atherosclerosis. JACC Basic Transl. Sci. 5, 1017–1028 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mussbacher, M. et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front. Immunol. 10, 85 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, C.-W. et al. Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses. Angiogenesis 19, 95–106 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nichol, D., & Stuhlmann, H. Egfl7: a unique angiogenic signaling factor in vascular development and disease. Blood 119, 1345–52 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margaritis, M. et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 127, 2209–2221 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Manzella, N. et al. Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell 17, e12811 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. CYBA (p22phox) variants associate with blood pressure and oxidative stress markers in hypertension: a replication study in populations of diverse altitudes. Hypertens. Res. 38, 498–506 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Pei, J., Pan, X., Wei, G., & Hua, Y. Research progress of glutathione peroxidase family (gpx) in redoxidation. Front Pharmacol. 14, 1147414 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munshaw, S., Redpath, A. N., Pike, B. T., & Smart, N. Thymosin β4 preserves vascular smooth muscle phenotype in atherosclerosis via regulation of low density lipoprotein related protein 1 (lrp1). Int. Immunopharmacol. 115, 109172 (2023).

    Article 

    Google Scholar
     

  • Kim, J.-H. et al. Thymosin β4-enhancing therapeutic efficacy of human adipose-derived stem cells in mouse ischemic hindlimb model. Int. J. Mol. Sci. 21, 2166 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abasht, B., Papah, M. B., & Qiu, J. Evidence of vascular endothelial dysfunction in wooden breast disorder in chickens: insights through gene expression analysis, ultra-structural evaluation and supervised machine learning methods. PLoS One 16, 0243983 (2021).

    Article 

    Google Scholar
     

  • Bechet, D., Tassa, A., Taillandier, D., Combaret, L. & Attaix, D. Lysosomal proteolysis in skeletal muscle. Int. J. Biochem. Cell Biol. 37, 2098–2114 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Gumpper, K., Sermersheim, M., Zhu, M. X. & Lin, P.-H. Skeletal muscle lysosomal function via cathepsin activity measurement. Methods Mol. Biol. 1854, 35–43 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komura, T. et al. Clinical features of cystatin A expression in patients with pancreatic ductal adenocarcinoma. Cancer Sci. 108, 2122–2129 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín-Ventura, J. L. et al. Increased CD74 expression in human atherosclerotic plaques: contribution to inflammatory responses in vascular cells. Cardiovasc. Res. 83, 586–594 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Salvia miltiorrhiza polysaccharides alleviate florfenicol-induced inflammation and oxidative stress in chick livers by regulating phagosome signaling pathway. Ecotoxicol. Environ. Saf. 249, 114428 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Corna, G. et al. The repair of skeletal muscle requires iron recycling through macrophage ferroportin. J. Immunol. 197, 1914–1925 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kernan, K. F. & Carcillo, J. A. Hyperferritinemia and inflammation. Int. Immunol. 29, 401–409 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitahara, T., Kiryu, S., Takeda, N., Kubo, T. & Kiyama, H. Up-regulation of ferritin heavy chain mrna expression in the rat skeletal muscle after denervation: Detected by means of differential display. Neurosci. Res. 23, 353–360 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Yadati, T., Houben, T., Bitorina, A., & Shiri-Sverdlov, R. The ins and outs of cathepsins: physiological function and role in disease management. Cells 9, 1679–1679 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., Li, M., Yu, Q., Han, L. & Ma, Z. Effects of lysosomal-mitochondrial apoptotic pathway on tenderness in post-mortem bovine longissimus muscle. J. Agric. Food Chem. 67, 4578–4587 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cacialli, P. et al. A connexin/ifi30 pathway bridges HSCs with their niche to dampen oxidative stress. Nat. Commun. 12, 4484 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Praud, C. et al. Molecular phenotyping of white striping and wooden breast myopathies in chicken. Front. Physiol. 11, 633 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marciano, C. M. M. et al. Differential expression of myogenic and calcium signaling-related genes in broilers affected with white striping. Front. Physiol. 12, 712464 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lake, J. A., Papah, M. B., & Abasht, B. Increased expression of lipid metabolism genes in early stages of wooden breast links myopathy of broilers to metabolic syndrome in humans. Genes, 10, 746 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pampouille, E. et al. Differential expression and co-expression gene network analyses reveal molecular mechanisms and candidate biomarkers involved in breast muscle myopathies in chicken. Sci. Rep. 9, 14905–14905 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stromer, M. H. The cytoskeleton in skeletal, cardiac and smooth muscle cells. Histol. Histopathol. 13, 283–291 (1998).

    PubMed 

    Google Scholar
     

  • Papah, M. B., & Abasht, B. Dysregulation of lipid metabolism and appearance of slow myofiber-specific isoforms accompany the development of wooden breast myopathy in modern broiler chickens. Sci. Rep. 9, 17170 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29. https://doi.org/10.1016/j.cell.2021.04.048 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripley, B. D. The R project in statistical computing. MSOR Connections 1, 23–25 (2001).

    Article 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell, 177, 1888-1902.e21 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C., & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974–1980 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–11 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles