Wednesday, September 27, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Speech characteristics yield important clues about motor function: Speech variability in individuals at clinical high-risk for psychosis – Schizophrenia


  • Cuesta, M. J. et al. Motor abnormalities in first-episode psychosis patients and long-term psychosocial functioning. Schizophr. Res. 200, 97–103 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • van Harten, P. N., Walther, S., Kent, J. S., Sponheim, S. R. & Mittal, V. A. The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neurosci. Biobehav. Rev. 80, 476–487 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Walther, S. & Strik, W. Motor symptoms and schizophrenia. Neuropsychobiology 66, 77–92 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mittal, V. A., Bernard, J. A. & Northoff, G. What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr. Bull. 43, 949–955 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean, D. J., Teulings, H. L., Caligiuri, M. & Mittal, V. A. Handwriting analysis indicates spontaneous dyskinesias in neuroleptic naïve adolescents at high risk for psychosis. J. Vis. Exp. https://doi.org/10.3791/50852 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osborne, K. J., Kraus, B., Lam, P. H., Vargas, T. & Mittal, V. A. Contingent negative variation blunting and psychomotor dysfunction in schizophrenia: A systematic review. Schizophr. Bull. 46, 1144–1154 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damme, K. S. F., Osborne, K. J., Gold, J. M. & Mittal, V. A. Detecting motor slowing in clinical high risk for psychosis in a computerized finger tapping model. Eur. Arch. Psychiatry Clin. Neurosci. 270, 393–397 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dean, D. J., Samson, A. T., Newberry, R. & Mittal, V. A. Motion energy analysis reveals altered body movement in youth at risk for psychosis. Schizophr. Res. 200, 35–41 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bernard, J. A. et al. Cerebellar networks in individuals at ultra high-risk of psychosis: Impact on postural sway and symptom severity. Hum. Brain Mapp. 35, 4064–4078 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kent, R. D. Research on speech motor control and its disorders: A review and prospective. J. Commun. Disord. 33, 391–428 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreasen, N. C., Paradiso, S. & O’Leary, D. S. “Cognitive Dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull. 24, 203–218 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howes, O. D. & Kapur, S. The dopamine hypothesis of schizophrenia: Version III—the final common pathway. Schizophr. Bull. 35, 549–562 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Northoff, G., Hirjak, D., Wolf, R. C., Magioncalda, P. & Martino, M. All roads lead to the motor cortex: Psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol. Psychiatry 26, 92–102 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Erlenmeyer-Kimling, L. et al. Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: The New York high-risk project. Am. J. Psychiatry 157, 1416–1422 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filatova, S. et al. Early motor developmental milestones and schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 188, 13–20 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kindler, J. et al. Abnormal involuntary movements are linked to psychosis-risk in children and adolescents: Results of a population-based study. Schizophr. Res. 174, 58–64 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rosso, I. M. et al. Childhood neuromotor dysfunction in schizophrenia patients and their unaffected siblings: A prospective cohort study. Schizophr. Bull. 26, 367–378 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, E. F., Savoie, T. & Davis, D. Neuromotor precursors of schizophrenia. Schizophr. Bull. 20, 441–451 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiffman, J. et al. Childhood motor coordination and adult schizophrenia spectrum disorders. Am. J. Psychiatry 166, 1041–1047 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howes, O. D. et al. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br. J. Psychiatry 191, s13–s18 (2007).

    Article 

    Google Scholar
     

  • Mittal, V. A., Dhruv, S., Tessner, K. D., Walder, D. J. & Walker, E. F. The relations among putative biorisk markers in schizotypal adolescents: Minor physical anomalies, movement abnormalities, and salivary cortisol. Biol. Psychiatry 61, 1179–1186 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittal, V. A. et al. Movement abnormalities and the progression of prodromal symptomatology in adolescents at risk for psychotic disorders. J. Abnorm. Psychol. 116, 260–267 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Mittal, V. A., Neumann, C., Saczawa, M. & Walker, E. F. Longitudinal progression of movement abnormalities in relation to psychotic symptoms in adolescents at high risk of schizophrenia. Arch. Gen. Psychiatry 65, 165–171 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mittal, V. A. & Walker, E. F. Movement abnormalities predict conversion to Axis I psychosis among prodromal adolescents. J. Abnorm. Psychol. 116, 796–803 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Mittal, V. A. et al. Markers of basal ganglia dysfunction and conversion to psychosis: Neurocognitive deficits and dyskinesias in the prodromal period. Biol. Psychiatry 68, 93–99 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean, D. J., Walther, S., Bernard, J. A. & Mittal, V. A. Motor clusters reveal differences in risk for psychosis, cognitive functioning, and thalamocortical connectivity: Evidence for vulnerability subtypes. Clin. Psychol. Sci. 6, 721–734 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittal, V. A. & Walther, S. As motor system pathophysiology returns to the forefront of psychosis research, clinical implications should hold center stage. Schizophr. Bull. 45, 495–497 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pappa, S. & Dazzan, P. Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: A systematic review. Psychol. Med. 39, 1065–1076 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinn, J. et al. Vulnerability to involuntary movements over a lifetime trajectory of schizophrenia approaches 100%, in association with executive (frontal) dysfunction. Schizophr. Res. 49, 79–87 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walther, S. & Mittal, V. A. Why we should take a closer look at gestures. Schizophr. Bull. 42, 259–261 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittal V. A., Walker E. F. Movement abnormalities: A putative biomarker of risk for psychosis. In (ed Ritsner M. S.) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes: Neuropsychological Endophenotypes and Biomarkers. (Springer, Netherlands, Dordrecht) https://doi.org/10.1007/978-1-4020-9464-4_17 (2009).

  • Mittal, V. A. & Wakschlag, L. S. Research Domain Criteria (RDoC) grows up: Strengthening neurodevelopmental investigation within the RDoC framework. J. Affect. Disord. 216, 30–35 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pieters, L. E., Nadesalingam, N., Walther, S. & van Harten, P. N. A systematic review of the prognostic value of motor abnormalities on clinical outcome in psychosis. Neurosci. Biobehav. Rev. 132, 691–705 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moberget, T. & Ivry, R. B. Prediction, psychosis, and the cerebellum. Biol. Psychiatry 4, 820–831 (2019).


    Google Scholar
     

  • Arevian, A. C. et al. Clinical state tracking in serious mental illness through computational analysis of speech. PLoS ONE 15, e0225695 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardini, F. et al. Associations of acoustically measured tongue/jaw movements and portion of time speaking with negative symptom severity in patients with schizophrenia in Italy and the United States. Psychiatry Res. 239, 253–258 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cohen, A. S., Alpert, M., Nienow, T. M., Dinzeo, T. J. & Docherty, N. M. Computerized measurement of negative symptoms in schizophrenia. J. Psychiatr. Res. 42, 827–836 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Cohen, A. S., Mitchell, K. R., Docherty, N. M. & Horan, W. P. Vocal expression in schizophrenia: Less than meets the ear. J. Abnorm. Psychol. 125, 299–309 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Compton, M. T. et al. The aprosody of schizophrenia: Computationally derived acoustic phonetic underpinnings of monotone speech. Schizophr. Res. 197, 392–399 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Covington, M. A. et al. Phonetic measures of reduced tongue movement correlate with negative symptom severity in hospitalized patients with first-episode schizophrenia-spectrum disorders. Schizophr. Res. 142, 93–95 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozano-Goupil, J., Raffard, S., Capdevielle, D., Aigoin, E. & Marin, L. Gesture-speech synchrony in schizophrenia: A pilot study using a kinematic-acoustic analysis. Neuropsychologia 174, 108347 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Martínez-Sánchez, F. et al. Can the acoustic analysis of expressive prosody discriminate schizophrenia? Span. J. Psychol. 18, E86 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Parola, A., Simonsen, A., Bliksted, V. & Fusaroli, R. Voice patterns in schizophrenia: A systematic review and Bayesian meta-analysis. Schizophr. Res. 216, 24–40 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rapcan, V. et al. Acoustic and temporal analysis of speech: A potential biomarker for schizophrenia. Med. Eng. Phys. 32, 1074–1079 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Pascal, A. et al. Voice onset time in aphasia, apraxia of speech and dysarthria: A review. Clin. Linguist. Phon. 14, 131–150 (2000).

    Article 

    Google Scholar
     

  • Goberman, A. M. & Coelho, C. Acoustic analysis of Parkinsonian speech I: Speech characteristics and L-Dopa therapy. NeuroRehabilitation 17, 237–246 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Kent, R. D. & Kim, Y.‐J. Toward an acoustic typology of motor speech disorders. Clin. Linguist. Phon. 17, 427–445 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Sichlinger, L., Cibelli, E., Goldrick, M. & Mittal, V. A. Clinical correlates of aberrant conversational turn-taking in youth at clinical high-risk for psychosis. Schizophr. Res. 204, 419–420 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Stanislawski, E. R. et al. Negative symptoms and speech pauses in youths at clinical high risk for psychosis. npj Schizophr. 7, 1–3 (2021).

    Article 

    Google Scholar
     

  • Hillenbrand, J., Getty, L. A., Clark, M. J. & Wheeler, K. Acoustic characteristics of American English vowels. J. Acoust. Soc. Am. 97, 3099–3111 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCloy, D. R., Wright, R. A. & Souza, P. E. Talker versus dialect effects on speech intelligibility: A symmetrical study. Lang. Speech 58, 371–386 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. & Myers, E. LIFG sensitivity to phonetic competition in receptive language processing: A comparison of clear and conversational speech. J. Cogn. Neurosci. 30, 267–280 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Niziolek, C. A. & Kiran, S. Assessing speech correction abilities with acoustic analyses: Evidence of preserved online correction in persons with aphasia. Int. J. Speech Lang. Pathol. 20, 659–668 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ackermann, H., Hertrich, I. & Hehr, T. Oral diadochokinesis in neurological dysarthrias. Folia Phoniatr. Logop. 47, 15–23 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fletcher, S. G. Time-by-count measurement of diadochokinetic syllable rate. J. Speech Hear. Res. 15, 763–770 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hitczenko K., Cowan H., Mittal V., Goldrick M. Automated coherence measures fail to index thought disorder in individuals at risk for psychosis. In Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access. Online: Association for Computational Linguistics; 2021:129–150.

  • Hitczenko, K., Cowan, H. R., Goldrick, M. & Mittal, V. A. Racial and ethnic biases in computational approaches to psychopathology. Schizophr. Bull. 48, 285–288 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Palaniyappan, L. More than a biomarker: Could language be a biosocial marker of psychosis. npj Schizophr. 7, 42 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damme, K. S. F., Schiffman, J., Ellman, L. M. & Mittal, V. A. Sensorimotor and activity psychosis-risk (SMAP-R) scale: An exploration of scale structure with replication and validation. Schizophr. Bull. 47, 332–343 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hitczenko, K., Mittal, V. A. & Goldrick, M. Understanding language abnormalities and associated clinical markers in psychosis: The promise of computational methods. Schizophr. Bull. 47, 344–362 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bortolini, U., Zmarich, C., Fior, R. & Bonifacio, S. Word-initial voicing in the productions of stops in normal and preterm Italian infants. Int. J. Pediatr. Otorhinolaryngol. 31, 191–206 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kewley-Port, D. & Preston, M. S. Early apical stop production: A voice onset time analysis. J. Phon. 2, 195–210 (1974).

    Article 

    Google Scholar
     

  • Kong E., Beckman M. E. & Edwards J. Fine-grained phonetics and acquisition of Greek voiced stops. In Proceedings of the XVIth International Congress of Phonetic Sciences. Saarbücken: University of Saarlandes, 6–10 (2007).

  • Kessinger, R. H. & Blumstein, S. E. Effects of speaking rate on voice-onset time in Thai, French, and English. J. Phon. 25, 143–168 (1997).

    Article 

    Google Scholar
     

  • Gavino M. F. & Goldrick M. Consequences of mixing and switching languages for retrieval and articulation. Bilingualism https://doi.org/10.1017/S1366728922000682 (2022).

  • Goldrick, M., Vaughn, C. & Murphy, A. The effects of lexical neighbors on stop consonant articulation. J. Acoust. Soc. Am. 134, EL172–EL177 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sharp, I. R., Kobak, K. A. & Osman, D. A. The use of videoconferencing with patients with psychosis: A review of the literature. Ann. Gen. Psychiatry 10, 14 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5, 1315–1316 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Hosmer D. W., Lemeshow S. & Sturdivant R. Assessing the fit of the model. In Applied Logistic Regression. (John Wiley & Sons, Ltd., 2013) 153–225. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118548387.ch5.

  • Brown, E. et al. The potential impact of COVID-19 on psychosis: A rapid review of contemporary epidemic and pandemic research. Schizophr. Res. 222, 79–87 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Druss, B. G. Addressing the COVID-19 pandemic in populations with serious mental illness. JAMA Psychiatry 77, 891–892 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Parola, A. et al. Speech disturbances in schizophrenia: Assessing cross-linguistic generalizability of NLP automated measures of coherence. Schizophr. Res. https://doi.org/10.1016/j.schres.2022.07.002 (2022).

  • Kuruvilla, D. M., Salazar, M., Zhang, A. & Mefferd, A. S. Detection of articulatory deficits in Parkinson’s disease: Can systematic manipulations of phonetic complexity help. J. Speech Lang. Hear. Res. 63, 2084–2098 (2020).

    Article 

    Google Scholar
     

  • Dean, D. J. et al. Cerebellar morphology and procedural learning impairment in neuroleptic-naive youth at ultrahigh risk of psychosis. Clin. Psychol. Sci. 2, 152–164 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Dean, D. J. et al. Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophr. Res. 162, 86–89 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, T., Cowan, H. R., Strauss, G. P., Walker, E. F. & Mittal, V. A. Deconstructing negative symptoms in individuals at clinical high-risk for psychosis: Evidence for volitional and diminished emotionality subgroups that predict clinical presentation and functional outcome. Schizophr. Bull. 47, 56–63 (2021).

    Article 

    Google Scholar
     

  • Mittal, V. A., Walker, E. F. & Strauss, G. P. The COVID-19 pandemic introduces diagnostic and treatment planning complexity for individuals at clinical high risk for psychosis. Schizophr. Bull. 47, 1518–1523 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masucci, M. D., Lister, A., Corcoran, C. M., Brucato, G. & Girgis, R. R. Motor dysfunction as a risk factor for conversion to psychosis independent of medication use in a psychosis-risk cohort. J. Nerv. Ment. Dis. 206, 356–361 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, T. J. et al. Symptom assessment in schizophrenic prodromal states. Psychiatr. Q. 70, 273–287 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fairbanks G. Voice and Articulation Drillbook. (Addison-Wesley Educational Publishers, 1960).

  • Fromm D. A., Forbes M., Holland A. & MacWhinney B. PWAs and PBJs: Language for Describing A Simple Procedure. http://aphasiology.pitt.edu/2491/ (2013).

  • Adi Y., Keshet J., Dmitrieva O. & Goldrick M. Automatic measurement of voice onset time and prevoicing using recurrent neural networks. in Interspeech (ISCA, 2016) 3152–3155. https://doi.org/10.21437/Interspeech.2016-893.

  • Barreda S. Fast Track: Fast (nearly) automatic formant-tracking using Praat. Linguist. Vanguard. https://doi.org/10.1515/lingvan-2020-0051 (2021).

  • McAuliffe M., Socolof M., Mihuc S., Wagner M. & Sonderegger M. Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi. in Interspeech (ISCA, 2017) 498–502. https://doi.org/10.21437/Interspeech.2017-1386.

  • Segal, Y. et al. DDKtor: Automatic Diadochokinetic Speech Analysis. In: Proc. Annual Conference of the International Speech Communication Association, INTERSPEECH. Vol 2022-September, 4611–4615. https://doi.org/10.21437/Interspeech.2022-311 (2022).

  • Sonderegger, M. & Keshet, J. Automatic discriminative measurement of voice onset time. J. Acoust. Soc. Am. 132, 3965–3979 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Keshet J., Sonderegger M. & Knowles T. AutoVOT: A tool for automatic measurement of voice onset time using discriminative structured prediction. https://github.com/mlml/autovot/ (2014).

  • Whiteside, S. P., Dobbin, R. & Henry, L. Patterns of variability in voice onset time: A developmental study of motor speech skills in humans. Neurosci. Lett. 347, 29–32 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisker, L. & Abramson, A. S. A cross-language study of voicing in initial stops: Acoustical measurements. WORD 20, 384–422 (1964).

    Article 

    Google Scholar
     

  • Stuart-Smith, J., Sonderegger, M., Rathcke, T. & Macdonald, R. The private life of stops: VOT in a real-time corpus of spontaneous Glaswegian. Lab. Phonol. 6, 505–549 (2015).


    Google Scholar
     

  • Gur, R. C. et al. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation. J. Neurosci. Methods 187, 254–262 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Saykin, A. J. et al. Normative neuropsychological test performance: Effects of age, education, gender and ethnicity. Appl. Neuropsychol. 2, 79–88 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J. & Ivry, R. B. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300, 1437–1439 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carroll, C. A., O’Donnell, B. F., Shekhar, A. & Hetrick, W. P. Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain Cognit. 71, 345–353 (2009).

    Article 

    Google Scholar
     

  • Da Silva, F. N. et al. More than just tapping: Index finger-tapping measures procedural learning in schizophrenia. Schizophr. Res. 137, 234–240 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osborne, K. J., Walther, S., Shankman, S. A. & Mittal, V. A. Psychomotor slowing in schizophrenia: Implications for endophenotype and biomarker development. Biomark. Neuropsychiatry 2, 100016 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rund, B. R. et al. Neurocognition and duration of psychosis: A 10-year follow-up of first-episode patients. Schizophr. Bull. 42, 87–95 (2016).

    PubMed 

    Google Scholar
     

  • D’Reaux, R. A., Neumann, C. S. & Rhymer, K. N. Time of day of testing and neuropsychological performance of schizophrenic patients and healthy controls. Schizophr. Res. 45, 157–167 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Gur, R. C. et al. Neurocognitive performance in family-based and case-control studies of schizophrenia. Schizophr. Res. 163, 17–23 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, H. E. et al. Neurocognitive functioning before and after the first psychotic episode: Does psychosis result in cognitive deterioration. Psychol. Med. 40, 1599–1606 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, D. J. & Mittal, V. A. Spontaneous parkinsonisms and striatal impairment in neuroleptic free youth at ultrahigh risk for psychosis. npj Schizophr. 1, 1–6 (2015).

    Article 

    Google Scholar
     

  • Dickson, H. et al. Cognitive impairment among children at-risk for schizophrenia. J. Psychiatr. Res. 50, 92–99 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Dickson, H., Laurens, K. R., Cullen, A. E. & Hodgins, S. Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychol. Med. 42, 743–755 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gschwandtner, U. et al. Fine motor function and neuropsychological deficits in individuals at risk for schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 256, 201–206 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Niendam, T. A. et al. The course of neurocognition and social functioning in individuals at ultra high risk for psychosis. Schizophr. Bull. 33, 772–781 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gur, R. C. et al. Computerized neurocognitive scanning: I. Methodology and validation in healthy people. Neuropsychopharmacology 25, 766–776 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wüthrich, F. et al. Test–retest reliability of a finger-tapping fMRI task in a healthy population. Eur. J. Neurosci. 57, 78–90 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Niendam, T. A. et al. Neurocognitive performance and functional disability in the psychosis prodrome. Schizophr. Res. 84, 100–111 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Damme, K. S. F. et al. Motor sequence learning and pattern recognition in youth at clinical high-risk for psychosis. Schizophr. Res. 208, 454–456 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean, D. J. et al. Longitudinal assessment and functional neuroimaging of movement variability reveal novel insights into motor dysfunction in clinical high risk for psychosis. Schizophr. Bull. 46, 1567–1576 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. Prediction of psychosis in prodrome: Development and validation of a simple, personalized risk calculator. Psychol. Med 49, 1990–1998 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Moore, T. M., Reise, S. P., Gur, R. E., Hakonarson, H. & Gur, R. C. Psychometric properties of the Penn Computerized Neurocognitive Battery. Neuropsychology 29, 235–246 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2021). https://www.R-project.org/.

  • Aust F., Barth M. papaja: Prepare Reproducible APA Journal Articles with R Markdown. https://github.com/crsh/papaja (2022).

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016). https://ggplot2.tidyverse.org.

  • Wickham H., François R., Henry L. & Müller K. dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr (2022).

  • Kassambara A. ggpubr: ’ggplot2’ Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr (2020).

  • Wickham H. stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr (2022).



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: