Thursday, June 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency – Communications Biology


  • Gatt, S. Enzymic hydrolysis and synthesis of ceramides. J. Biol. Chem. 238, 3131–3133 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. M. et al. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics 62, 223–231 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Eijk, M., Ferraz, M. J., Boot, R. G. & Aerts, J. Lyso-glycosphingolipids: presence and consequences. Essays Biochem 64, 565–578 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuboi, K. et al. Involvement of acid ceramidase in the degradation of bioactive N-acylethanolamines. Biochimica et. Biophysica Acta (BBA) – Mol. Cell Biol. Lipids 1866, 158972 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sugita, M., Dulaney, J. T. & Moser, H. W. Ceramidasedeficiency in Farber’s disease (lipogranulomatosis). Science 178, 1100–1102 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujiwaki, T. et al. Tissue accumulation of sulfatide and GM3 ganglioside in a patient with variant Farber disease. Clin. Chim. Acta 234, 23–36 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, F. P. S., Amintas, S., Levade, T. & Medin, J. A. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J. Rare Dis. 13, 121 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsea, S. H. et al. ASAH1 pathogenic variants associated with acid ceramidase deficiency: Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy. Hum. Mutat. 41, 1469–1487 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiumara, A., Nigro, F., Pavone, L. & Moser, H. W. Farber disease with prolonged survival. J. Inherit. Metab. Dis. 16, 915–916 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goudie, C. et al. Hematopoietic stem cell transplant does not prevent neurological deterioration in infants with Farber disease: Case report and literature review. JIMD Rep. 46, 46–51 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am. J. Hum. Genet 91, 5–14 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haluk, T. & Judith, M. Spinal muscular atrophy associated with progressive myoclonus epilepsy. Epileptic Disord. 18, 128–134 (2016).

    Article 

    Google Scholar
     

  • Shervin Badv, R., Nilipour, Y., Rahimi-Dehgolan, S., Rashidi-Nezhad, A. & Ghahvechi Akbari, M. A novel case report of spinal muscular atrophy with progressive myoclonic epilepsy from Iran. Int Med Case Rep. J. 12, 155–159 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filosto, M. et al. ASAH1 variant causing a mild SMA phenotype with no myoclonic epilepsy: a clinical, biochemical and molecular study. Eur. J. Hum. Genet 24, 1578–1583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubboli, G. et al. Spinal muscular atrophy associated with progressive myoclonic epilepsy: A rare condition caused by mutations in ASAH1. Epilepsia 56, 692–698 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teoh, H. L. et al. Polyarticular arthritis and spinal muscular atrophy in acid ceramidase deficiency. Pediatrics 138, e20161068 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ame van der Beek, N. et al. A new case of SMA phenotype without epilepsy due to biallelic variants in ASAH1. Eur. J. Hum. Genet 27, 337–339 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jankovic, J. & Rivera, V. M. Hereditary myoclonus and progressive distal muscular atrophy. Ann. Neurol. 6, 227–231 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lance, J. W. & Evans, W. A. Progressive myoclonic epilepsy, nerve deafness and spinal muscular atrophy. Clin. Exp. Neurol. 20, 141–151 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Liyanage, D. S., Pathberiya, L. S., Gooneratne, I. K., Vithanage, K. K. & Gamage, R. Association of type IV spinal muscular atrophy (SMA) with myoclonic epilepsy within a single family. Int. Arch. Med. 7, 42 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taglioli, M., Bartolini, S., Volpi, G., Alberti, G. & Ambrosetto, G. [Progressive familial myoclonic epilepsy with bulbo-spinal amyotrophy. Clinical, electrophysiological study, and biopsy of a case]. Riv. Neurol. 60, 201–206 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Giráldez, B. G. et al. Uniparental disomy as a cause of spinal muscular atrophy and progressive myoclonic epilepsy: Phenotypic homogeneity due to the homozygous c.125C>T mutation in ASAH1. Neuromuscul. Disord. 25, 222–224 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dyment, D. A. et al. Evidence for clinical, genetic and biochemical variability in spinal muscular atrophy with progressive myoclonic epilepsy. Clin. Genet. 86, 558–563 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolb, S. J. & Kissel, J. T. Spinal muscular atrophy: a timely review. Arch. Neurol. 68, 979–984 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Querin, G. et al. The spinal and cerebral profile of adult spinal-muscular atrophy: A multimodal imaging study. NeuroImage: Clin. 21, 101618 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yonekawa, T., Komaki, H., Saito, Y., Sugai, K. & Sasaki, M. Peripheral nerve abnormalities in pediatric patients with spinal muscular atrophy. Brain Dev. 35, 165–171 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chedrawi, A. K. et al. Novel V97G ASAH1 mutation found in Farber disease patients: unique appearance of the disease with an intermediate severity, and marked early involvement of central and peripheral nervous system. Brain Dev. 34, 400–404 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Molz, G. Farbersche Krankheit. Virchows Arch. A 344, 86–99 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Körver, S., Vergouwe, M., Hollak, C. E. M., van Schaik, I. N. & Langeveld, M. Development and clinical consequences of white matter lesions in Fabry disease: a systematic review. Mol. Genet. Metab. 125, 205–216 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Davies, E. H., Seunarine, K. K., Banks, T., Clark, C. A. & Vellodi, A. Brain white matter abnormalities in paediatric Gaucher Type I and Type III using diffusion tensor imaging. J. Inherit. Metab. Dis. 34, 549–553 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Di Rocco, M. et al. Different molecular mechanisms leading to white matter hypomyelination in infantile onset lysosomal disorders. Neuropediatrics 36, 265–269 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Resende, L. L., Paiva, A. R. Bd, Kok, F., Leite, Cd. C. & Lucato, L. T. Adult leukodystrophies: A step-by-step diagnostic approach. RadioGraphics 39, 153–168 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Eliyahu, E., Park, J.-H., Shtraizent, N., He, X. & Schuchman, E. H. Acid ceramidase is a novel factor required for early embryo survival. FASEB J. 21, 1403–1409 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C.-M. et al. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79, 218–224 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alayoubi, A. M. et al. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol. Med. 5, 827–842 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F. P. S. et al. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am. J. Physiol. Lung Cell Mol. Physiol. 314, L406–L420 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, F. P. S. et al. Hepatic pathology and altered gene transcription in a murine model of acid ceramidase deficiency. Lab Invest. 99, 1572–1592 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dworski, S. et al. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica 100, e162–e165 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sikora, J. et al. Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities. Am. J. Pathol. 187, 864–883 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F. P. S. et al. Acid ceramidase deficiency in mice leads to severe ocular pathology and visual impairment. Am. J. Pathol. 189, 320–338 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rybova, J., Kuchar, L., Sikora, J., McKillop, W. M. & Medin, J. A. Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency. J. Inherit. Metab. Dis. 45, 1175–1190 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyment, D. A., Bennett, S. A. L., Medin, J. A. & Levade, T. In GeneReviews((R)) (eds M. P. Adam et al.) (2018).

  • Yu, F. P. S., Dworski, S. & Medin, J. A. Deletion of MCP-1 impedes pathogenesis of acid ceramidase deficiency. Sci. Rep. 8, 1808–1808 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckmann, N. et al. Pathological manifestations of Farber disease in a new mouse model. Biol. Chem. 399, 1183–1202 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagy, A. et al. Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol. 8, 661–664 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyers, E. N., Lewandoski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18, 136–141 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, S., Tenzen, T. & McMahon, A. P. Maternal inheritance of Cre activity in a Sox2Cre deleter strain. genesis 37, 51–53 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc. Natl. Acad. Sci. USA 116, 20097–20103 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dworski, S. et al. Acid Ceramidase Deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochimica et. Biophysica Acta (BBA) – Mol. Basis Dis. 1863, 386–394 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sturm, R. M. & Cheng, E. Y. Bladder wall thickness in the assessment of neurogenic bladder: a translational discussion of current clinical applications. Ann. Transl. Med. 4, 32–32 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Öztürk Akcora, B., Vassilios Gabriël, A., Ortiz-Perez, A. & Bansal, R. Pharmacological inhibition of STAT3 pathway ameliorates acute liver injury in vivo via inactivation of inflammatory macrophages and hepatic stellate cells. FASEB BioAdv. 2, 77–89 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samoriski, G. M. & Applegate, C. D. Repeated generalized seizures induce time-dependent changes in the behavioral seizure response independent of continued seizure induction. J. Neurosci. 17, 5581–5590 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferland, R. J. The repeated flurothyl seizure model in mice. Bio. Protoc. 7 https://doi.org/10.21769/BioProtoc.2309 (2017).

  • Sarna, J. R. et al. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J. Comp. Neurol. 456, 279–291 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Sarna, J., Miranda, S. R. P., Schuchman, E. H. & Hawkes, R. Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur. J. Neurosci. 13, 1873–1880 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Praggastis, M. et al. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J. Neurosci. 35, 8091–8106 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Liu, Y., Sullards, M. C. & Merrill, A. H. An introduction to sphingolipid metabolism and analysis by new technologies. NeuroMolecular Med. 12, 306–319 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, J. S. & Sampson, E. L. Lipid composition of the normal human brain: gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544 (1965).

    Article 
    PubMed 

    Google Scholar
     

  • Fitzner, D. et al. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep. 32, 108132 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novakova, L. et al. Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. J. Neurochem. 146, 322–332 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nijeholt, G. J. et al. Post-mortem high-resolution MRI of the spinal cord in multiple sclerosis: a correlative study with conventional MRI, histopathology and clinical phenotype. Brain 124, 154–166 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calabrese, E. et al. Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. Neuroimage Clin. 18, 963–971 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Y. et al. Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain 142, 426–442 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mar, S. & Noetzel, M. Axonal damage in leukodystrophies. Pediatr. Neurol. 42, 239–242 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lecommandeur, E. et al. Decrease in myelin-associated lipids precedes neuronal loss and glial activation in the CNS of the sandhoff mouse as determined by metabolomics. Metabolites 11, 18 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei, F. et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. Elife 5, e18246 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 63, 635–651 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dorrier, C. E. et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat. Neurosci. 24, 234–244 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Ambrosi, N. & Apolloni, S. Fibrotic scar in neurodegenerative diseases. Front Immunol. 11, 1394–1394 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibata, M. et al. Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J. Clin. Invest 106, 643–653 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez, E., Rivat, C., Pommier, B., Mauborgne, A. & Pohl, M. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J. Neurochem. 107, 50–60 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bley, A. et al. The natural history of Canavan disease: 23 new cases and comparison with patients from literature. Orphanet J. Rare Dis. 16, 227–227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonnino, S. & Chigorno, V. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochimica et. Biophysica Acta (BBA) – Rev. Biomembranes 1469, 63–77 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Vutukuri, R. et al. S1P d20:1, an endogenous modulator of S1P d18:1/S1P2-dependent signaling. FASEB J. 34, 3932–3942 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tredici, G., Buccellato, F. R., Cavaletti, G. & Scalabrino, G. Subacute combined degeneration in totally gastrectomized rats: an ultrastructural study. J. Submicrosc. Cytol. Pathol. 30, 165–173 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. Y., Lee, J. W., Park, K. S., Wi, J. Y. & Kang, H. S. Spine MR imaging features of subacute combined degeneration patients. Eur. Spine J. 23, 1052–1058 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Qudsiya, Z. & De Jesus, O. In StatPearls (2021).

  • Wolffenbuttel, B. H. R., Wouters, H. J. C. M., Heiner-Fokkema, M. R. & van der Klauw, M. M. The Many Faces of Cobalamin (Vitamin B(12)) Deficiency. Mayo Clin. Proc. Innov. Qual. Outcomes 3, 200–214 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, M. J., Rasmussen, M. R., Andersen, C. B. F., Nexø, E. & Moestrup, S. K. Vitamin B12 transport from food to the body’s cells—a sophisticated, multistep pathway. Nat. Rev. Gastroenterol. Hepatol. 9, 345–354 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannibal, L. et al. Hampered Vitamin B12 metabolism in Gaucher disease. J. Inborn Errors Metab. Screen. 5, 2326409817692359 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Savage, D. G., Lindenbaum, J., Stabler, S. P. & Allen, R. H. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am. J. Med. 96, 239–246 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misra, U. K., Kalita, J., Kumar, G. & Kapoor, R. Bladder dysfunction in subacute combined degeneration. J. Neurol. 255, 1881–1888 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCombe, P. A., Gordon, T. P. & Jackson, M. W. Bladder dysfunction in multiple sclerosis. Expert Rev. Neurotherapeutics 9, 331–340 (2009).

    Article 

    Google Scholar
     

  • Taweel, W. A. & Seyam, R. Neurogenic bladder in spinal cord injury patients. Res Rep. Urol. 7, 85–99 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, S. & Hughes, R. C. Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages. J. Biol. Chem. 269, 4424–4430 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichert, F. & Rotshenker, S. Galectin-3 (MAC-2) Controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Front. Cel. Neurosci. 13, https://doi.org/10.3389/fncel.2019.00090 (2019).

  • Bonsack, F. & Sukumari-Ramesh, S. Differential cellular expression of galectin−1 and galectin-3 after intracerebral hemorrhage. Front Cell Neurosci. 13, 157 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotshenker, S. The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J. Mol. Neurosci. 39, 99–103 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morizawa, Y. M. et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8, 28 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajuebor, M. N. et al. Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. J. Leukoc. Biol. 63, 108–116 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212, 481–495 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, C. R. & Gahl, W. A. Lysosomal storage diseases. Transl. Sci. Rare Dis. 2, 1–71 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, T. B. et al. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat. Rev. Neurol. 15, 161–178 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitner, E. B., Farfel-Becker, T., Eilam, R., Biton, I. & Futerman, A. H. Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain 135, 1724–1735 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gan, J. J. et al. Acid ceramidase deficiency associated with spinal muscular atrophy with progressive myoclonic epilepsy. Neuromuscul. Disord. 25, 959–963 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Adang, L. A. et al. Revised consensus statement on the preventive and symptomatic care of patients with leukodystrophies. Mol. Genet. Metab. 122, 18–32 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, D. T. et al. SMA-MAP: a plasma protein panel for spinal muscular atrophy. PLoS One 8, e60113–e60113 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberhardt, O. & Topka, H. Myoclonic disorders. Brain Sci. 7, 103 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza, A. D. & Moloi, M. W. Involuntary movements due to vitamin B12 deficiency. Neurological Res. 36, 1121–1128 (2014).

    Article 

    Google Scholar
     

  • Alroughani, R. A., Ahmed, S. F., Khan, R. A. & Al-Hashel, J. Y. Spinal segmental myoclonus as an unusual presentation of multiple sclerosis. BMC Neurol. 15, 15–15 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marrie, R. A. et al. Unusual imaging findings in progressive myoclonus epilepsy. Epilepsia 42, 430–432 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, W. T. et al. Progressive myoclonus epilepsy without renal failure in a Chinese family with a novel mutation in SCARB2 gene and literature review. Seizure 57, 80–86 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hagen, M. C. et al. Encephalopathy with neuroserpin inclusion bodies presenting as progressive myoclonus epilepsy and associated with a novel mutation in the Proteinase Inhibitor 12 gene. Brain Pathol. 21, 575–582 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pant, D. C. et al. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J. Clin. Investig. 129, 1240–1256 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karsai, G. et al. DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. J. Clin. Investig. 129, 1229–1239 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolgin, V. et al. DEGS1 variant causes neurological disorder. Eur. J. Hum. Genet. 27, 1668–1676 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edvardson, S. et al. Deficiency of the alkaline ceramidase ACER3 manifests in early childhood by progressive leukodystrophy. J. Med Genet 53, 389–396 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papandrea, D., Anderson, T. M., Herron, B. J. & Ferland, R. J. Dissociation of seizure traits in inbred strains of mice using the flurothyl kindling model of epileptogenesis. Exp. Neurol. 215, 60–68 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engel, J. Seizures and epilepsy. Second edition. edn, (Oxford University Press, 2013).

  • Caviness, J. N. & Brown, P. Myoclonus: current concepts and recent advances. Lancet Neurol. 3, 598–607 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Jana, A. & Pahan, K. Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis. J. Neuroimmune Pharm. 2, 184–193 (2007).

    Article 

    Google Scholar
     

  • Lee, J.-T. et al. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J. Cell Biol. 164, 123–131 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chami, M. et al. Acid sphingomyelinase deficiency enhances myelin repair after acute and chronic demyelination. PLoS One 12, e0178622–e0178622 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Doorn, R. et al. Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathologica 124, 397–410 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, D. L. et al. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J. lipid Res. 61, 505–522 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. F. et al. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15, 85–97 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, H. et al. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell. Microbiol. 9, 1239–1251 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Church, J. S., Kigerl, K. A., Lerch, J. K., Popovich, P. G. & McTigue, D. M. TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord. J. Neurosci. 36, 6352–6364 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohassel, P. et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197–1204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D. & Mattson, M. P. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress–induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 52, 448–457 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, D. L., Gable, K., Suemitsu, J., Dunn, T. M. & Wattenberg, B. W. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: Reconstitution of SPT regulation in isolated membranes. J. Biol. Chem. 294, 5146–5156 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, B. A. et al. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. Elife 8, e51067 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Momoi, T., Ben-Yoseph, Y. & Nadler, H. L. Substrate-specificities of acid and alkaline ceramidases in fibroblasts from patients with Farber disease and controls. Biochem J. 205, 419–425 (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugita, M., Williams, M., Dulaney, J. T. & Moser, H. W. Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim Biophys. Acta 398, 125–131 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnamurthy, K., Dasgupta, S. & Bieberich, E. Development and characterization of a novel anti-ceramide antibody. J. Lipid Res. 48, 968–975 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowart, L. A., Szulc, Z., Bielawska, A. & Hannun, Y. A. Structural determinants of sphingolipid recognition by commercially available anti-ceramide antibodies. J. Lipid Res 43, 2042–2048 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreyev, A. Y. et al. Subcellular organelle lipidomics in TLR-4-activated macrophages. J. lipid Res. 51, 2785–2797 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grösch, S., Schiffmann, S. & Geisslinger, G. Chain length-specific properties of ceramides. Prog. Lipid Res. 51, 50–62 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Cruickshanks, N. et al. Differential regulation of autophagy and cell viability by ceramide species. Cancer Biol. Ther. 16, 733–742 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muralidharan, S. et al. A reference map of sphingolipids in murine tissues. Cell Rep. 35, 109250 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen, A. S. B. & Færgeman, N. J. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol. 7, 170069 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taguchi, A. et al. A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem J. 456, 373–383 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, J. S. et al. Blocking hyperactive androgen receptor signaling ameliorates cardiac and renal hypertrophy in Fabry mice. Hum. Mol. Genet 24, 3181–3191 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirahara, Y. et al. Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. J. Neurochem. 140, 435–450 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhat, O. M. et al. Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Sci. Rep. 10, 1645 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedia, C., Camacho, L., Abad, J. L., Fabrias, G. & Levade, T. A simple fluorogenic method for determination of acid ceramidase activity and diagnosis of Farber disease. J. Lipid Res. 51, 3542–3547 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carson, F. L. & Cappellano, C. H. Histotechnology. (ASCP Press, 2009).

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saville, J. T. & Fuller, M. Sphingolipid dyshomeostasis in the brain of the mouse model of mucopolysaccharidosis type IIIA. Mol. Genet. Metab. 129, 111–116 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saville, J. T., Thai, H. N., Lehmann, R. J., Derrick-Roberts, A. L. & Fuller, M. Subregional brain distribution of simple and complex glycosphingolipids in the mucopolysaccharidosis type I (Hurler syndrome) mouse: impact of diet. J. Neurochem 141, 287–295 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tinklenberg, J. et al. Treatment with ActRIIB-mFc produces myofiber growth and improves lifespan in the Acta1 H40Y murine model of nemaline myopathy. Am. J. Pathol. 186, 1568–1581 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravenscroft, G. et al. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. Brain 134, 1101–1115 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrison, S. R., Kramer, A. A., Gerges, N. Z., Hillery, C. A. & Stucky, C. L. Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors. Mol. Pain. 8, 62–62 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avants, B. B. et al. The Insight ToolKit image registration framework. Front Neuroinform 8, 44 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: