Friday, February 23, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Structure–activity relationships for the G-quadruplex-targeting experimental drug QN-302 and two analogues probed with comparative transcriptome profiling and molecular modeling – Scientific Reports


  • Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiegel, J., Adhikari, S. & Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123–136 (2019).

    Article 

    Google Scholar
     

  • Winnerdy, F. R. & Phan, A. T. Quadruplex structure and diversity. Ann. Rep. Med. Chem. 54, 45–73 (2020).


    Google Scholar
     

  • Todd, A. K., Johnston, M. & Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593–11598 (2002).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Balasubramanian, S., Hurley, L. H. & Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy?. Nat. Rev. Drug Discov. 10, 261–275 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rigo, R., Palumbo, M. & Sissi, C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim. Biophys. Acta 1861, 1399–1413 (2017).

    Article 

    Google Scholar
     

  • Hansel-Hertsch, R. et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lago, S. et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun. 12, 3885 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, J. et al. Promoter G-quadruplex folding precedes transcription and is controlled by chromatin. Genome Biol. 22, 143 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano, F. et al. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin. Ther. Pat. 19, 1–29 (2023).


    Google Scholar
     

  • Alessandrini, I., Recagni, M., Zaffaroni, N. & Folini, M. On the road to fight cancer: the potential of G-quadruplex ligands as novel therapeutic agents. Int. J Mol. Sci. 22, 5947 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosiol, N., Juranek, S., Brossart, P., Heine, A. & Paeschke, K. G-quadruplexes: A promising target for cancer therapy. Mol. Cancer. 20, 40 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes, E., Aljnadi, I. M., Bahls, B., Victor, B. L. & Paulo, A. major achievements in the design of quadruplex-interactive small molecules. Pharmaceuticals (Basel) 15, 300 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Boddupally, P. V. et al. Anticancer activity and cellular repression of c-MYC by the G-quadruplex-stabilizing 11-piperazinylquindoline is not dependent on direct targeting of the G-quadruplex in the c-MYC promoter. J. Med. Chem. 55, 6076–6086 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calabrese, D. R. et al. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat. Commun. 9, 4229 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. B. et al. Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC. J. Am. Chem. Soc. 141, 11059–11070 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavrado, J. et al. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci. Rep. 5, 9696 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brito, H. et al. KRAS oncogene in colon cancer cells with 7-carboxylate indolo[3,2-b]quinoline tri-alkylamine derivatives. PLoS ONE 10, e0126891 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X.-D. et al. Turning off transcription of the bcl-2 gene by stabilizing the bcl-2 promoter quadruplex with quindoline derivatives. J. Med. Chem. 53, 4390–4398 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nadai, M. et al. Assessment of gene promoter G-quadruplex binding and modulation by a naphthalene diimide derivative in tumor cells. Int. J. Oncol. 46, 369–380 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Spinello, A., Barone, G. & Grunenberg, J. Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: The importance of the protonation state and mediated hydrogen bonds. Phys. Chem. Chem. Phys. 18, 2871–2877 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lopergolo, A. et al. Targeting of RET oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer. Oncotarget 7, 49649–49663 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recagni, M. et al. Distinct biological responses of metastatic castration resistant prostate cancer cells upon exposure to G-quadruplex interacting naphthalenediimide derivatives. Eur. J. Med. Chem. 177, 401–413 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pirota, V., Nadai, M., Doria, F. & Richter, S. N. Naphthalene diimides as multimodal G-quadruplex-selective ligands. Molecules 24, 426 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Platella, C., Napolitano, E., Riccardi, C., Musumeci, D. & Montesarchio, D. Disentangling the structure−activity relationships of naphthalenediimides as anticancer G-quadruplex-targeting drugs. J. Med. Chem. 64, 3578–3603 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Soto, M. et al. Structure-activity relationship studies on divalent naphthalene diimide G quadruplex ligands with anticancer and antiparasitic activity. Bioorg. Med. Chem. 71, 116946 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gunaratnam, M. et al. A naphthalene diimide G-quadruplex ligand inhibits cell growth and down-regulates BCL-2 expression in an imatinib-resistant gastrointestinal cancer cell line. Bioorg. Med. Chem. 26, 2958–2964 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cuenca, F. et al. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg. Med. Chem. Lett. 18, 1668–1673 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Hampel, S. M., Sidibe, A., Gunaratnam, M., Riou, J.-F. & Neidle, S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett. 20, 6459–6463 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gunaratnam, M. et al. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg. Med. Chem. 19, 7151–7157 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Collie, G. W. et al. Structural basis for telomeric G-quadruplex naphthalene diimide ligand targeting. J. Am. Chem. Soc. 134, 2723–2731 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Micco, M. et al. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J. Med. Chem. 56, 2959–2974 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ohnmacht, S. A. et al. A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer. Sci. Rep. 5, 11385 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchetti, C. et al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J. Med. Chem. 61, 2500–2517 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, A. A., Marchetti, C., Ohnmacht, S. A. & Neidle, S. A G-quadruplex-binding compound shows potent activity in human gemcitabine-resistant pancreatic cancer cells. Sci. Rep. 10, 12192 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, A. A. et al. Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models. ACS Med. Chem. Lett. 11, 1634–1644 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vo, T. et al. Substituted naphthalenediimide compounds bind selectively to two human quadruplex structures with parallel topology. ACS. Med. Chem. Lett. 11, 991–999 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, A. A. et al. The potent G-quadruplex-binding compound QN-302 downregulates S100P gene expression in cells and in an in vivo model of pancreatic cancer. Molecules. 28, 2452 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradise, B. D. et al. promotes GLI activity in a Hedgehog-independent manner in pancreatic cancer. Biochem. J. 480, 1199–1216 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vera, R. E. et al. GLI1 interaction with p300 modulates SDF1 expression in cancer-associated fibroblasts to promote pancreatic cancer cells migration. Biochem. J. 480, 225–241 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Maresca, L. et al. Targeting GLI1 and GLI2 with small molecule inhibitors to suppress GLI-dependent transcription and tumor growth. Pharmacol. Res. 195, 106858 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rabiei, N., Soltanian, A. R., Farhadian, M. & Bahreini, F. the performance evaluation of the random forest algorithm for a gene selection in identifying genes associated with resectable pancreatic cancer in microarray dataset: A retrospective study. Cell J. 25, 347–353 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quatannens, D. et al. Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. Pharmacol. Ther. 236, 108107 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. Involvement of elevated ASF1B in the poor prognosis and tumorigenesis in pancreatic cancer. Mol. Cell Biochem. 477, 1947–1957 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. H. et al. Downregulation of ASF1B inhibits tumor progression and enhances efficacy of cisplatin in pancreatic cancer. Cancer Biomark. 34, 647–659 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Anti-silencing function 1B promotes the progression of pancreatic cancer by activating c-Myc. Int. J. Oncol. 62, 8 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, D. et al. Stomatin-like protein 2 induces metastasis by regulating the expression of a rate-limiting enzyme of the hexosamine biosynthetic pathway in pancreatic cancer. Oncol. Rep. 45, 90 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, W., Zhang, Y., Dou, J., Cui, P. & Zhu, J. S100P as a potential biomarker for immunosuppressive microenvironment in pancreatic cancer: A bioinformatics analysis and in vitro study. BMC Cancer 23, 997 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, W. et al. Up-regulation of S100P predicts the poor long-term survival and construction of prognostic signature for survival and immunotherapy in patients with pancreatic cancer. Bioengineered 12, 9006–9020 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsunaga, T. et al. S100P in duodenal fluid is a useful diagnostic marker for pancreatic ductal adenocarcinoma. Pancreas 46, 1288–1295 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. S100 proteins in pancreatic cancer: Current knowledge and future perspectives. Front. Oncol. 11, 711180 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava, K., Lines, K. E., Jach, D. & Crnogorac-Jurcevic, T. S100PBP is regulated by mutated KRAS and plays a tumour suppressor role in pancreatic cancer. Oncogene 42, 3422–3434 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, M. et al. S100P contributes to promoter demethylation and transcriptional activation of SLC2A5 to promote metastasis in colorectal cancer. Br. J. Cancer 125, 734–747 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camara, R. et al. Discovery of novel small molecule inhibitors of S100P with in vitro anti-metastatic effects on pancreatic cancer cells. Eur. J. Med. Chem. 203, 112621 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. Gli1 inhibition suppressed cell growth and cell cycle progression and induced apoptosis as well as autophagy depending on ERK1/2 activity in human chondrosarcoma cells. Cell Death Dis. 5, e979 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Russo Krauss, I., Ramaswamy, S., Neidle, S., Haider, S. & Parkinson, G. N. Structural insights into the quadruplex-duplex 3′ interface formed from a telomeric repeat: a potential molecular target. J. Am. Chem. Soc. 138, 1226–1233 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Neidle, S. Structured waters mediate small molecule binding to G-quadruplex nucleic acids. Pharmaceuticals (Basel) 15, 7 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Zgarbova, M. et al. Refinement of the sugar-phosphate backbone torsion beta for the AMBER force fields improves the description of Z-DNA and B-DNA. J. Chem. Theory Comput. 11, 5723–5736 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Joung, I. S. & Cheatham, T. E. 3rd. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 112, 9020–9041 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, M. J., Giupponi, G. & Fabritiis, G. D. ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 (2008).

    Article 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles