Friday, December 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Temperature modulates the osmosensitivity of tilapia prolactin cells – Scientific Reports


  • Greenwell, M. G., Sherrill, J. & Clayton, L. A. Osmoregulation in fish: Mechanisms and clinical implications. Veterinary Clin North Am. Exot. Anim. Pract. 6, 169–189 (2003).

    Article 

    Google Scholar
     

  • Marshall, W. & Grosell, M. Ion transport, osmoregulation, and acid-base balance. Ion Transp. Osmoregul. Acid-Base Balance Homeost. Reprod. 177–210 (2005).

  • Edwards, S. L. & Marshall, W. S. Principles and patterns of osmoregulation and euryhalinity in fishes. Fish Physiol. 32, 1–44 (2012).

    Article 

    Google Scholar
     

  • Seale, A. P. & Breves, J. P. Endocrine and osmoregulatory responses to tidally-changing salinities in fishes. Gen. Comp. Endocrinol. 326, 114071 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takei, Y. & McCormick, S. D. Hormonal control of fish euryhalinity. Fish Physiol. 32, 69–123 (2012).

    Article 

    Google Scholar
     

  • Kültz, D. The combinatorial nature of osmosensing in fishes. Physiology 27, 259–275 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Seale, A., Hirano, T. & Grau, E. G. Osmoreception: A fish model for a fundamental sensory modality. Fish Endocrinol. 419–440 (2006).

  • Bagatinsky, V. A. & Diansky, N. A. Contributions of climate changes in temperature and salinity to the formation of North Atlantic thermohaline circulation trends in 1951–2017. Mosc. Univ. Phys. Bull. 77, 564–580 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vargas-Chacoff, L., Martínez, D., Oyarzún-Salazar, R., Paschke, K. & Navarro, J. M. The osmotic response capacity of the Antarctic fish Harpagifer antarcticus is insufficient to cope with projected temperature and salinity under climate change. J. Therm. Biol. 96, 102835–102835 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernard, V., Young, J. & Binart, N. Prolactin—A pleiotropic factor in health and disease. Nat. Rev. Endocrinol. 15, 356–365 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grattan, D. R. & Kokay, I. C. Prolactin: A pleiotropic neuroendocrine hormone. J. Neuroendocrinol. 20, 752–763 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, M. E., Kanyicska, B., Lerant, A. & Nagy, G. Prolactin: Structure, function, and regulation of secretion. 80, (2000).

  • Hirano, T. The spectrum of prolactin action in teleosts. Prog. Clin. Biol. Res. 205, 53–74 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Kwong, A. K., Ng, A. H., Leung, L. Y., Man, A. K. & Woo, N. Y. Effect of extracellular osmolality and ionic levels on pituitary prolactin release in euryhaline silver sea bream (Sparus sarba ). Gen. Comp. Endocrinol. 160, 67–75 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Grau, E. G. & Helms, L. M. The tilapia prolactin cell: A model for stimulus-secretion coupling. Fish Physiol. Biochem. 7, 11–19 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishioka, R. S., Kelley, K. M. & Bern, H. A. Control of prolactin and growth hormone secretion in teleost fishes. Zool. Sci. 5, 267–280 (1988).

    CAS 

    Google Scholar
     

  • Seale, A. P. et al. Prolactin177, prolactin188 and prolactin receptor 2 in the pituitary of the euryhaline tilapia, Oreochromis mossambicus, are differentially osmosensitive. J. Endocrinol. 213, 89–98 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seale, A. P., Fiess, J. C., Hirano, T., Cooke, I. M. & Grau, E. G. Disparate release of prolactin and growth hormone from the tilapia pituitary in response to osmotic stimulation. Gen. Comp. Endocrinol. 145, 222–231 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seale, A. et al. Effects of environmental osmolality on release of prolactin, growth hormone and ACTH from the tilapia pituitary. Gen. Comp. Endocrinol. 128, 91–101 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Specker, J. L. et al. Isolation and partial characterization of a pair of prolactins released in vitro by the pituitary of a cichlid fish, Oreochromis mossambicus. Proc. Natl. Acad. Sci. 82, 7490–7494 (1985).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, K. et al. Complete amino acid sequences of a pair of fish (tilapia) prolactins, tPRL177 and tPRL188. J. Biol. Chem. 263, 9113–9121 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiol, D. F., Sanmarti, E., Sacchi, R. & Kültz, D. A novel tilapia prolactin receptor is functionally distinct from its paralog. J. Exp. Biol. 212, 2007–2015 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borski, R. J., Hansen, M. U., Nishioka, R. S. & Grau, E. G. Differential processing of the two prolactins of the tilapia (Oreochromis mossambicus) in relation to environmental salinity. J. Exp. Zool. 264, 46–54 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Breves, J. P. et al. Dynamic gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158, 194–200 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Magdeldin, S. et al. Effects of environmental salinity on somatic growth and growth hormone/insulin-like growth factor-I axis in juvenile tilapia Oreochromis mossambicus. Fish. Sci. 73, 1025–1034 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Seale, A. P., Watanabe, S. & Grau, E. G. Osmoreception: Perspectives on signal transduction and environmental modulation. Gen. Comp. Endocrinol. 176, 354–360 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo, D. W. et al. Tilapia prolactin cells are thermosensitive osmoreceptors. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 322, R609–R619 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trewavas, E. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia. (British Museum (Natural History), 1983).

  • Seale, A. P. et al. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J. Neuroendocrinol. 32, e12905 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seale, A. P., Richman, N. H., Hirano, T., Cooke, I. & Grau, E. G. Evidence that signal transduction for osmoreception is mediated by stretch-activated ion channels in tilapia. Am. J. Physiol. Cell Physiol. 284, C1290–C1296 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seale, A. P., Richman, N. H., Hirano, T., Cooke, I. & Grau, E. G. Cell volume increase and extracellular Ca2+ are needed for hyposmotically induced prolactin release in tilapia. Am. J. Physiol. Cell Physiol. 284, C1280–C1289 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, S., Hirano, T., Grau, E. G. & Kaneko, T. Osmosensitivity of prolactin cells is enhanced by the water channel aquaporin-3 in a euryhaline Mozambique tilapia (Oreochromis mossambicus ). Am. J. Physiol.-Regul. Integr. Comp. Physiol. 296, R446–R453 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, G. M. et al. Hormone release is tied to changes in cell size in the osmoreceptive prolactin cell of a euryhaline teleost fish, the tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 138, 8–13 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, S., Seale, A. P., Grau, E. G. & Kaneko, T. Stretch-activated cation channel TRPV4 mediates hyposmotically induced prolactin release from prolactin cells of mozambique tilapia Oreochromis mossambicus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1004–R1011 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seale, A. P., Mita, M., Hirano, T. & Gordon Grau, E. Involvement of the cAMP messenger system and extracellular Ca2+ during hyposmotically-induced prolactin release in the Mozambique tilapia. Gen. Comp. Endocrinol. 170, 401–407 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, Y., Moriyama, S., Lerner, D. T., Grau, E. G. & Seale, A. P. Autocrine positive feedback regulation of prolactin release from tilapia prolactin cells and its modulation by extracellular osmolality. Endocrinology 157, 3505–3516 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malintha, G. H. T., Celino-Brady, F. T., Stoytcheva, Z. R. & Seale, A. P. Osmosensitive transcription factors in the prolactin cell of a euryhaline teleost. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 278, 111356–111356 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poncelet, A.-C. et al. The tilapia prolactin I gene: evolutionary conservation of the regulatory elements directing pituitary-specific expression. DNA Cell Biol. 15, 679–692 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jafek, J. L. et al. Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp. Hematol. 76, 38-48.e2 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J. et al. A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev. 23, 208–222 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J. et al. Regulation of Oct1/Pou2f1 transcription activity by O-GlcNAcylation. FASEB J. 27, 2807–2817 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J., Davidson, M. K. & Wahls, W. P. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6-M26 and the osmotic stress response. Nucleic Acids Res. 36, 2838–2851 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thiel, G., Al Sarraj, J., Vinson, C., Stefano, L. & Bach, K. Role of basic region leucine zipper transcription factors cyclic AMP response element binding protein (CREB), CREB2, activating transcription factor 2 and CAAT/enhancer binding protein α in cyclic AMP response element-mediated transcription. J. Neurochem. 92, 321–336 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorgen, M., Jorgensen, E. H., Jordan, W. C., Martin, S. A. M. & Hazlerigg, D. G. NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar). Mar. Genomics 31, 25–31 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshimoto, S. et al. NFAT5 promotes oral squamous cell carcinoma progression in a hyperosmotic environment. Lab. Invest. 101, 38–50 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amoudi, M. A., El-Sayed, A.-F.M. & El-Ghobashy, A. Effects of thermal and thermo-haline shocks on survival and osmotic concentration of the Tilapias Oreochromis mossambicus and Oreochromis aureus × Oreochromis niloticus hybrids. J. World Aquac. Soc. 27, 456–461 (1996).

    Article 

    Google Scholar
     

  • Sardella, B. A., Cooper, J., Gonzalez, R. J. & Brauner, C. J. The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 137, 621–629 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, H. J., Lee, S. Y. & Kim, Y. K. Molecular characterization of transient receptor potential vanilloid 4 (TRPV4) gene transcript variant mRNA of chum salmon Oncorhynchus keta in response to salinity or temperature changes. Gene 795, 145779 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dharmamba, M. & Nishioka, R. S. Response of “prolactin-secreting” cells of Tilapia mossambica to environmental salinity. Gen. Comp. Endocrinol. 10, 409–420 (1968).

    Article 

    Google Scholar
     

  • Grau, E. G., Nishioka, R. S. & Bern, H. A. Effects of osmotic pressure and calcium ion on prolactin release in vitro from the rostral pars distalis of the tilapia Sarotherodon mossambicus. Gen. Comp. Endocrinol. 45, 406–408 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiess, J. C. et al. Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 146, 252–264 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Hyde, G. N., Seale, A. P., Grau, E. G. & Borski, R. J. Cortisol rapidly suppresses intracellular calcium and voltage-gated calcium channel activity in prolactin cells of the tilapia (Oreochromis mossambicus ). Am. J. Physiol. Endocrinol. Metab. 286, E626–E633 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchida, K. et al. In vitro effects of cortisol on the release and gene expression of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 135, 116–125 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borski, R. J., Helms, L. M., Richman, N. H. & Grau, E. G. Cortisol rapidly reduces prolactin release and cAMP and 45Ca2+ accumulation in the cichlid fish pituitary in vitro. Proc. Natl. Acad. Sci. 88, 2758–2762 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, W. O., Ernst, D. H., Chasar, M. P., Wicklund, R. I. & Olla, B. L. The effects of temperature and salinity on growth and feed utilization of juvenile, sex-reversed male Florida red tilapia cultured in a recirculating system. Aquaculture 112, 309–320 (1993).

    Article 

    Google Scholar
     

  • Rubin, D. A. & Specker, J. L. In vitro effects of homologous prolactins on testosterone production by testes of tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 87, 189–196 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shepherd, B. S. et al. Somatotropic actions of the homologous growth hormone and prolactins in the euryhaline teleost, the tilapia, Oreochromis mossambicus. Proc. Natl. Acad. Sci. 94, 2068–2072 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, Y. et al. Acute salinity tolerance and the control of two prolactins and their receptors in the Nile tilapia (Oreochromis niloticus) and Mozambique tilapia (O. mossambicus): A comparative study. Gen. Comp. Endocrinol. 257, 168–176 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seale, A. P. et al. Differential regulation of TRPV4 mRNA levels by acclimation salinity and extracellular osmolality in euryhaline tilapia. Gen. Comp. Endocrinol. 178, 123–130 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inokuchi, M. et al. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 309, R1251–R1263 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seale, A. P. et al. Systemic versus tissue-level prolactin signaling in a teleost during a tidal cycle. J. Comp. Physiol. B 189, 581–594 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grau, E. G. et al. The role of calcium in prolactin release from the pituitary of a teleost fish in vitro. Endocrinol. Phila. 119, 2848–2855 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Seale, A., Cooke, I., Hirano, T. & Grau, G. Evidence that IP3 and ryanodine-sensitive intra-cellular Ca2+ stores are not involved in acute hyposmotically-induced prolactin release in tilapia. Cell. Physiol. Biochem. 14, 155–166 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilius, B., Vriens, J., Prenen, J., Droogmans, G. & Voets, T. TRPV4 calcium entry channel: A paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 286, C195–C205 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. Molecular sensors and modulators of thermoreception. Channels Austin Tex 9, 73–81 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kass, G. E. N. & Orrenius, S. Calcium signaling and cytotoxicity. Environ. Health Perspect. 107, 11 (1999).


    Google Scholar
     

  • Lemasters, J. J. & Nieminen, A.-L. Mitochondria in Pathogenesis. (Kluwer Academic/Plenum, 2001).

  • Augustijn, K. D. et al. Structural characterization of the PIT-1/ETS-1 interaction: PIT-1 Phosphorylation regulates PIT-1/ETS-1 binding. Proc. Natl. Acad. Sci. PNAS 99, 12657–12662 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Voss, J. W., Wilson, L. & Rosenfeld, M. G. POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter. Genes Dev. 5, 1309–1320 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helms, L. M. H., Grau, E. G. & Borski, R. J. Effects of osmotic pressure and somatostatin on the cAMP messenger system of the osmosensitive prolactin cell of a teleost fish, the tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 83, 111–117 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gout, J. et al. CCAAT/enhancer-binding proteins (C/EBPs) regulate the basal and cAMP-induced transcription of the human 11β-hydroxysteroid dehydrogenase encoding gene in adipose cells. Biochimie 88, 1115–1124 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelletier, N. et al. Activation of haptoglobin gene expression by cAMP involves CCAAT/enhancer-binding protein isoforms in intestinal epithelial cells. FEBS Lett. 439, 275–280 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, M. et al. Stat1 mediates an auto-regulation of hsp90β gene in heat shock response. Cell. Signal. 22, 1206–1213 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sedlacek, A. L., Kinner-Bibeau, L. B., Wang, Y., Mizes, A. P. & Binder, R. J. Tunable heat shock protein-mediated NK cell responses are orchestrated by STAT1 in antigen presenting cells. Sci. Rep. 11, 16106–16106 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Diverse effects of Stat1 on the regulation of hsp90α gene under heat shock. J. Cell. Biochem. 102, 1059–1066 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macian, F., Lopez-Rodriguez, C. & Rao, A. Partners in transcription: NFAT and AP-1: AP-1. Oncogene 20, 2476–2489 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Rodrı́guez C, et al. Bridging the NFAT and NF-κB families: NFAT5 Dimerization regulates cytokine gene transcription in response to osmotic stress. Immun. Camb. Mass 15, 47–58 (2001).


    Google Scholar
     

  • Neilson, J., Stankunas, K. & Crabtree, G. R. Monitoring the duration of antigen-receptor occupancy by calcineurin/glycogen-synthase-kinase-3 control of NF-AT nuclear shuttling. Curr. Opin. Immunol. 13, 346–350 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, R. D., Darling, C. E., Roth, T. P., Ricciardi, R. & Chari, R. S. Activator protein 1 activation following hypoosmotic stress in HepG2 cells is Actin cytoskeleton dependent. J. Surg. Res. 100, 176–182 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mccabe, J. T. & Burrell, A. S. Alterations of AP-1 and CREB protein DNA binding in rat supraoptic and paraventricular nuclei by acute and repeated hyperosmotic stress. Brain Res. Bull. 55, 347–358 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ying, Z., Reisman, D. & Buggy, J. AP-1 DNA binding activity induced by hyperosmolality in the rat hypothalamic supraoptic and paraventricular nuclei. Brain Res. Mol. Brain Res. 39, 109–116 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshikawa-Ebesu, J. S. M., Borski, R. J., Richman, N. H. III. & Grau, E. G. Effects of acclimation salinity and in vitro medium osmotic pressure on the incorporation of 3H-leucine into the two prolactins of the tilapia, Oreochromis mossambicus. J. Exp. Zool. 271, 331–339 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Ayson, F. G., Kaneko, T., Hasegawa, S. & Hirano, T. Differential expression of two prolactin and growth hormone genes during early development of tilapia (Oreochromis mossambicus) in fresh water and seawater: Implications for possible involvement in osmoregulation during early life stages. Gen. Comp. Endocrinol. 95, 143–152 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yada, T., Hirano, T. & Grau, E. G. Changes in plasma levels of the two prolactins and growth hormone during adaptation to different salinities in the euryhaline tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 93, 214–223 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breves, J. P., Watanabe, S., Kaneko, T., Hirano, T. & Grau, E. G. Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl− cotransporter in hypophysectomized Mozambique tilapia. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 299, R702–R710 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tipsmark, C. K. et al. Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J. Endocrinol. 209, 237–244 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierce, A. L. et al. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: Tissue specific expression and differential regulation by salinity and fasting. Gen. Comp. Endocrinol. 154, 31–40 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    10FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: