Friday, February 23, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

The causal effects of genetically predicted alcohol consumption on endometrial cancer risk from a Mendelian randomization study – Scientific Reports


  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Global, regional, and national burden of endometrial cancer, 1990–2017: Results from the global burden of disease study, 2017. Front. Oncol. 9, 1440 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, B. O. et al. Health and cancer risks associated with low levels of alcohol consumption. Lancet Public Health 8(1), e6–e7 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: A population-based study. Lancet Oncol. 22(8), 1071–1080 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friberg, E. et al. Alcohol intake and endometrial cancer risk: A meta-analysis of prospective studies. Br. J. Cancer 103(1), 127–131 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Alcohol consumption and the risk of endometrial cancer: A meta-analysis. Asia Pac. J. Clin. Nutr. 20(1), 125–133 (2011).

    PubMed 

    Google Scholar
     

  • Turati, F. et al. Alcohol and endometrial cancer risk: A case-control study and a meta-analysis. Cancer Causes Control 21(8), 1285–1296 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Q. et al. Does alcohol consumption modify the risk of endometrial cancer? A dose-response meta-analysis of prospective studies. Arch. Gynecol. Obstet. 295(2), 467–479 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lawlor, D. A. et al. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27(8), 1133–1163 (2008).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Bowden, J. & Holmes, M. V. Meta-analysis and Mendelian randomization: A review. Res. Synth. Methods 10(4), 486–496 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson, S. C. et al. Smoking, alcohol consumption, and cancer: A mendelian randomisation study in UK Biobank and international genetic consortia participants. PLoS Med. 17(7), e1003178 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Habitual consumption of alcohol with meals and lung cancer: A Mendelian randomization study. Ann. Transl. Med. 9(3), 263 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y., Huang, J. & Wong, M. C. S. Associations of alcohol and coffee with colorectal cancer risk in East Asian populations: A Mendelian randomization study. Eur J Nutr 62(2), 749–756 (2023).

    PubMed 

    Google Scholar
     

  • Li, Y. et al. Alcohol consumption and colorectal cancer risk: A mendelian randomization study. Front Genet 13, 967229 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J., Jiang, X. & Niu, Z. Alcohol consumption and risk of breast and ovarian cancer: A Mendelian randomization study. Cancer Genet 245, 35–41 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xiong, J. et al. The causal association between smoking, alcohol consumption and risk of bladder cancer: A univariable and multivariable Mendelian randomization study. Int J Cancer 151(12), 2136–2143 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR statement. Jama 326(16), 1614–1621 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. Bmj 375, n2233 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51(2), 237–244 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, M. et al. Adiposity and cancer: A Mendelian randomization analysis in the UK biobank. Int. J. Obes. 45(12), 2657–2665 (2021).

    Article 

    Google Scholar
     

  • Painter, J. N. et al. Genetic risk score Mendelian randomization shows that obesity measured as body mass index, but not waist: Hip ratio, is causal for endometrial cancer. Cancer Epidemiol. Biomarkers Prev. 25(11), 1503–1510 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Insight into the causality between basal metabolic rate and endometrial and ovarian cancers: Analysis utilizing systematic Mendelian randomization and genetic association data from over 331,000 UK biobank participants. Eur. J. Clin. Invest. 53(6), e13971 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Educational attainment and endometrial cancer: A Mendelian randomization study. Front. Genet. 13, 993731 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kho, P. F. et al. Mendelian randomization analyses suggest a role for cholesterol in the development of endometrial cancer. Int. J. Cancer 148(2), 307–319 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40(3), 740–752 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26(5), 2333–2355 (2017).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Shim, H. et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One 10(4), e0120758 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Mara, T. A. et al. Identification of nine new susceptibility loci for endometrial cancer. Nat. Commun. 9(1), 3166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbanck, M. et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50(5), 693–698 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J. et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40(4), 304–314 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42(5), 1497–1501 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ginsburg, E. S. et al. Effects of alcohol ingestion on estrogens in postmenopausal women. Jama 276(21), 1747–1751 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Mendelson, J. H. et al. Acute alcohol effects on plasma estradiol levels in women. Psychopharmacology 94(4), 464–467 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Tin, S. T. et al. Alcohol intake and endogenous sex hormones in women: Meta-analysis of cohort studies and Mendelian randomization. Res. Sq. https://doi.org/10.21203/rs.3.rs-3249588/v1 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26(2), 252–258 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558(7708), 73–79 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Secretan, B. et al. A review of human carcinogens–Part E: Tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10(11), 1033–1034 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Rinaldi, S. et al. Relationship of alcohol intake and sex steroid concentrations in blood in pre- and post-menopausal women: The European Prospective Investigation into Cancer and Nutrition. Cancer Causes Control 17(8), 1033–1043 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Parazzini, F. et al. Alcohol and endometrial cancer risk: Findings from an Italian case-control study. Nutr. Cancer 23(1), 55–62 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Setiawan, V. W. et al. Alcohol consumption and endometrial cancer risk: The multiethnic cohort. Int. J. Cancer 122(3), 634–638 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosono, S. et al. Reduced risk of endometrial cancer from alcohol drinking in Japanese. Cancer Sci. 99(6), 1195–1201 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Webster, L. A. & Weiss, N. S. Alcoholic beverage consumption and the risk of endometrial cancer. Cancer and Steroid Hormone Study Group. Int. J. Epidemiol. 18(4), 786–791 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, H. P. et al. Alcohol and endometrial cancer risk in the NIH-AARP diet and health study. Int J Cancer 128(12), 2953–2961 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Swanson, C. A. et al. Moderate alcohol consumption and the risk of endometrial cancer. Epidemiology 4(6), 530–536 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Je, Y., De Vivo, I. & Giovannucci, E. Long-term alcohol intake and risk of endometrial cancer in the Nurses’ Health Study, 1980–2010. Br. J. Cancer 111(1), 186–194 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chhim, A. S. et al. Prospective association between alcohol intake and hormone-dependent cancer risk: modulation by dietary fiber intake. Am. J. Clin. Nutr. 102(1), 182–189 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, D. J. et al. CYP19A1 fine-mapping and Mendelian randomization: Estradiol is causal for endometrial cancer. Endocr. Relat. Cancer 23(2), 77–91 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tin Tin, S., Key, T. J. & Reeves, G. K. Alcohol intake and endogenous hormones in pre- and postmenopausal women: Findings from the UK Biobank. Cancer Epidemiol. Biomarkers Prev. 30(12), 2294–2301 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konishi, I. et al. Increased expression of LH/hCG receptors in endometrial hyperplasia and carcinoma in anovulatory women. Gynecol. Oncol. 65(2), 273–280 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Arcangeli, A. et al. The LH/hCG axis in endometrial cancer: A new target in the treatment of recurrent or metastatic disease. Obstet. Gynecol. Int. 2010, 48 (2010).

    Article 

    Google Scholar
     

  • Park, A. L. et al. Prenatal biochemical screening and a woman’s long-term risk of cancer: A population-based cohort study. JNCI Cancer Spectr. 4(1), pkz077 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Identification of six candidate genes for endometrial carcinoma by bioinformatics analysis. World J. Surg. Oncol. 18(1), 161 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayabe, T. et al. Increased circulating levels of insulin-like growth factor-I and decreased circulating levels of insulin-like growth factor binding protein-1 in postmenopausal women with endometrial cancer. Endocr. J. 44(3), 419–424 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Shibel, R. et al. The olfactory receptor gene product, OR5H2, modulates endometrial cancer cells proliferation via interaction with the IGF1 signaling pathway. Cells 10, 6 (2021).

    Article 

    Google Scholar
     

  • Kashima, H. et al. Autocrine stimulation of IGF1 in estrogen-induced growth of endometrial carcinoma cells: Involvement of the mitogen-activated protein kinase pathway followed by up-regulation of cyclin D1 and cyclin E. Endocr. Relat. Cancer 16(1), 113–122 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lavigne, J. A. et al. Effects of alcohol on insulin-like growth factor I and insulin-like growth factor binding protein 3 in postmenopausal women. Am. J. Clin. Nutr. 81(2), 503–507 (2005).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles