Sunday, May 28, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

The effect of deep brain stimulation in Parkinson’s disease reflected in EEG microstates – npj Parkinson’s Disease


  • Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Habets, J. G. V. et al. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov. Disord. 33, 1834–1843 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halje, P. et al. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J. Neurophysiol. 122, 203–231 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Horn, A. et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn, A. et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142, 3129–3143 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kahan, J. et al. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain 137, 1130–1144 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jech, R. & Mueller, K. Investigating network effects of DBS with fMRI. In Connectomic Deep Brain Stimulation 275–301 (Elsevier, 2022). https://doi.org/10.1016/B978-0-12-821861-7.00026-9.

  • Younce, J. R. et al. Resting‐State Functional Connectivity Predicts STN DBS Clinical Response. Mov. Disord. 36, 662–671 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shen, L. et al. Subthalamic Nucleus Deep Brain Stimulation Modulates 2 Distinct Neurocircuits. Ann. Neurol. 88, 1178–1193 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michel, C. M., Koenig, T. & Brandeis, D. Electrical Neuroimaging. Electrical Neuroimaging (Cambridge University Press, 2009). https://doi.org/10.1017/CBO9780511596889

  • Giannicola, G. et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp. Neurol. 226, 120–127 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bočková, M. et al. Suboptimal response to STN-DBS in Parkinson’s disease can be identified via reaction times in a motor cognitive paradigm. J. Neural Transm. 127, 1579–1588 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hirschmann, J. et al. A direct relationship between oscillatory subthalamic nucleus–cortex coupling and rest tremor in Parkinson’s disease. Brain 136, 3659–3670 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bočková, M. et al. Cortical network organization reflects clinical response to subthalamic nucleus deep brain stimulation in Parkinson’s disease. Hum. Brain Mapp. 42, 5626–5635 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michel, C. M. & Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 180, 577–593 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Khanna, A., Pascual-Leone, A., Michel, C. M. & Farzan, F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 49, 105–113 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bréchet, L. et al. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage 194, 82–92 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Britz, J., Van De Ville, D. & Michel, C. M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52, 1162–1170 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Rajkumar, R. et al. Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Hum. Brain Mapp. 1–12 (2018). https://doi.org/10.1002/hbm.24429

  • Custo, A. et al. Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain Connect 7, 671–682 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamoš, M., Morávková, I., Ondráček, D., Bočková, M. & Rektorová, I. Altered Spatiotemporal Dynamics of the Resting Brain in Mild Cognitive Impairment with Lewy Bodies. Mov. Disord. 36, 2435–2440 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nishida, K. et al. EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin. Neurophysiol. 124, 1106–1114 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pal, A., Behari, M., Goyal, V. & Sharma, R. Study of EEG microstates in Parkinson’s disease: a potential biomarker? Cogn. Neurodyn 15, 463–471 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Schumacher, J. et al. Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain 142, 1767–1782 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sverak, T., Albrechtova, L., Lamos, M., Rektorova, I. & Ustohal, L. Intensive repetitive transcranial magnetic stimulation changes EEG microstates in schizophrenia: A pilot study. Schizophr. Res. 193, 451–452 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Koenig, T. et al. A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur. Arch. Psychiatry Clin. Neurosci. 249, 205–211 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, C. et al. Spatiotemporal EEG microstate analysis in drug-free patients with Parkinson’s disease. NeuroImage Clin. 25, 102132 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Serrano, J. I. et al. EEG Microstates Change in Response to Increase in Dopaminergic Stimulation in Typical Parkinson’s Disease Patients. Front. Neurosci. 12, 1–9 (2018).

    Article 

    Google Scholar
     

  • Li, Z. et al. Dysfunctional Brain Dynamics of Parkinson’s Disease and the Effect of Acute Deep Brain Stimulation. Front. Neurosci. 15, 1–11 (2021).


    Google Scholar
     

  • Kühn, A. A., Kupsch, A., Schneider, G.-H. & Brown, P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, P. Bad oscillations in Parkinson’s disease. In Parkinson’s Disease and Related Disorders 27–30 (Springer Vienna, 2006). https://doi.org/10.1007/978-3-211-45295-0_6.

  • Cagnan, H., Denison, T., McIntyre, C. & Brown, P. Emerging technologies for improved deep brain stimulation. Nat. Biotechnol. 37, 1024–1033 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bočková, M. & Rektor, I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges. J. Neural Transm. 128, 1169–1175 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Telkes, I. et al. Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease. Proc. Natl Acad. Sci. U. S. A. 115, E8567–E8576 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 15, 343–352 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, S. et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 87, 717–721 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rosa, M. et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov. Disord. 30, 1003–1005 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bočková, M. & Rektor, I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin. Neurophysiol. 130, 239–247 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Geraedts, V. J. et al. Preoperative Electroencephalography-Based Machine Learning Predicts Cognitive Deterioration After Subthalamic Deep Brain Stimulation. Mov. Disord. 36, 2324–2334 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bréchet, L., Brunet, D., Perogamvros, L., Tononi, G. & Michel, C. M. EEG microstates of dreams. Sci. Rep. 10, 17069 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oswal, A. et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain 139, 1482–1496 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kikuchi, M. et al. Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: Time and frequency domain approaches. Schizophr. Res. 97, 163–172 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litvak, V. et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134, 359–374 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18, 357–363 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Eusebio, A. et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J. Neurol. Neurosurg. Psychiatry 82, 569–573 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitmer, D. et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front. Hum. Neurosci. 6, 1–18 (2012).

    Article 

    Google Scholar
     

  • Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Brunet, D., Murray, M. M. & Michel, C. M. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011, 813870 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michel, C. M. & Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 10, 1–18 (2019).

    Article 

    Google Scholar
     

  • Seeber, M. et al. Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nat. Commun. 10, 753 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: