Friday, June 9, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

The effects of trans fat diet intake on metabolic parameters and pancreatic tissue in offspring of prenatal bisphenol A exposed rats – Scientific Reports


  • Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N. & Welshons, W. V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24, 139–177 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother–neonate pairs. Sci. Total Environ. 626, 1494–1501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Balakrishnan, B., Henare, K., Thorstensen, E. B., Ponnampalam, A. P. & Mitchell, M. D. Transfer of bisphenol A across the human placenta. Am. J. Obstet. Gynecol. 202(393), e1-393.e7 (2010).


    Google Scholar
     

  • Nishikawa, M. et al. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ. Health Perspect. 118, 1196–1203 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y. et al. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia 56, 2059–2067 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimpi, P. C. et al. Hepatic lipid accumulation and Nrf2 expression following perinatal and peripubertal exposure to bisphenol A in a mouse model of nonalcoholic liver disease. Environ. Health Perspect. 125, 1–10 (2017).

    Article 

    Google Scholar
     

  • Zulkifli, S., Rahman, A. A., Kadir, S. H. S. A. & Nor, N. S. M. Bisphenol A and its effects on the systemic organs of children. Eur. J. Pediatr. 180, 3111–3127 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manukyan, L., Dunder, L., Lejonklou, M. H., Lind, P. M. & Bergsten, P. Developmental exposure to a very low dose of bisphenol A induces persistent islet insulin hypersecretion in Fischer 344 rat offspring. Environ. Res. 172, 127–136 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, Z. et al. Gestational bisphenol A exposure induces fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell Biol. Toxicol. 37, 65–84 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang, F. et al. Maternal prenatal urinary bisphenol A level and child cardio- metabolic risk factors: A prospective cohort study. Environ. Pollut. 265, 115008 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashley-Martin, J. et al. A birth cohort study to investigate the association between prenatal phthalate and bisphenol A exposures and fetal markers of metabolic dysfunction. Environ. Health 13, 1–14 (2014).

    Article 

    Google Scholar
     

  • Alonso-magdalena, P., Quesada, I. & Nadal, Á. Prenatal exposure to BPA and offspring outcomes: The diabesogenic behavior of BPA. Dose Response 13, 1–8 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, B. et al. Association of bisphenol A and its substitutes, bisphenol F and bisphenol S, with obesity in United States children and adolescents. Diabetes Metab. J. 43, 59–75 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolinoy, D. C., Huang, D. & Jirtle, R. L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. U. S. A. 104, 13056–13061 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotoh, N. et al. Evaluating the content and distribution of Trans fatty acid isomers in foods consumed in Japan. J. Oleo Sci. 68, 193–202 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Trans-fatty acids aggravate obesity, insulin resistance and hepatic steatosis in C57BL/6 mice, possibly by suppressing the IRS1 dependent pathway. Molecules 21, 705 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Micha, R. & Mozaffarian, D. Trans fatty acids: Effects on metabolic syndrome, heart disease and diabetes. Nat. Rev. Endocrinol. 5, 335–344 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutchinson, J., Rippin, H. L., Jewell, J., Breda, J. J. & Cade, J. E. Comparison of high and low trans-fatty acid consumers: Analyses of UK National Diet and Nutrition Surveys before and after product reformulation. Public Health Nutr. 21, 465–479 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Brouwer, I. A., Wanders, A. J. & Katan, M. B. Trans fatty acids and cardiovascular health: Research completed ?. Eur. J. Clin. Nutr. 67, 541–547 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, K. et al. Potential of trans fats policies to reduce socioeconomic inequalities in mortality from coronary heart disease in England: Cost effectiveness modelling study. BMJ 351, h4583 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Eliminating trans fats in Europe. WHO Regional Office for Europe https://apps.who.int/iris/handle/10665/363877 (2015).

  • Wei, J. et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152, 3049–3061 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, S. et al. High-fat diet aggravates glucose homeostasis disorder caused by chronic exposure to bisphenol A. J. Endocrinol. 221, 167–179 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Arevalo, M. et al. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS ONE 9, e100214 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarah, Z. et al. Prenatal bisphenol A exposure and postnatal trans fat diet alter small intestinal morphology and its global DNA methylation in male sprague-dawley rats, leading to obesity development. Nutrients 14, 2382 (2022).

    Article 

    Google Scholar
     

  • Lin, R. et al. Non-alcoholic fatty liver disease induced by perinatal exposure to bisphenol a is associated with activated mTOR and TLR4/NF-κB signaling pathways in offspring rats. Front. Endocrinol. 10, 620 (2019).

    Article 

    Google Scholar
     

  • Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 6, 1–9 (2015).

    Article 

    Google Scholar
     

  • Bansal, A. et al. Sex- and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first- and second-generation adult mice offspring. Environ. Health Perspect. 125, 097022 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Susiarjo, M. et al. Bisphenol A exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 156, 2049–2058 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masjedi, F., Gol, A. & Dabiri, S. Preventive effect of garlic (Allium sativum L.) on serum biochemical factors and histopathology of pancreas and liver in streptozotocin-induced diabetic rats. Iran. J. Pharm. Res. 12, 325–338 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolt, H. M. & Stewart, J. D. Highlight report: The bisphenol A controversy. Arch. Toxicol. 85, 1491–1492 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • International Food Safety Authorities Network (INFOSAN). BISPHENOL A (BPA): Current state of knowledge and future actions by WHO and FAO. Who http://www.who.int/foodsafety/publications/fs_management/No_05_Bisphenol_A_Nov09_en.pdf?ua=1 (2009).

  • Shu, L. et al. Prenatal bisphenol A exposure in mice induces multitissue multiomics disruptions linking to cardiometabolic disorders. Endocrinology 160, 409–429 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos-Silva, A. P., De Moura, E. G., Pinheiro, C. R., Oliveira, E. & Lisboa, P. C. Short-term and long-term effects of bisphenol A (BPA) exposure during breastfeeding on the biochemical and endocrine profiles in rats. Horm. Metab. Res. 50, 491–503 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angle, B. M. et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol. 42, 256–268 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diamante, G. et al. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environ. Int. 146, 106260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veiga-Lopez, A. et al. Developmental programming: Interaction between prenatal bpa exposure and postnatal adiposity on metabolic variables in female sheep. Am. J. Physiol. Endocrinol. Metab. 310, E238–E247 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Moon, M. K. et al. Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J. Endocrinol. 226, 35–42 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacKay, H. et al. Organizational effects of perinatal exposure to bisphenol-a and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology 154, 1465–1475 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, S., Zhang, L., Zhang, H., Wei, W. & Jia, L. Perinatal BPA exposure induces hyperglycemia, oxidative stress and decreased adiponectin production in later life of male rat offspring. Int. J. Environ. Res. Public Health 11, 3728–3742 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strakovsky, R. S. et al. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis. Toxicol. Appl. Pharmacol. 284, 101–112 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. The effects of perinatal bisphenol A exposure on thyroid hormone homeostasis and glucose metabolism in the prefrontal cortex and hippocampus of rats. Brain Behav. 9, e01225 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osso, F. S. et al. Trans fatty acids in maternal milk lead to cardiac insulin resistance in adult offspring. Nutrition 24, 727–732 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso-Magdalena, P. et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 118, 1243–1250 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrugia, F., Aquilina, A., Vassallo, J. & Pace, N. P. Bisphenol A and type 2 diabetes mellitus: A review of epidemiologic, functional, and early life factors. Int. J. Environ. Res. Public Health 18, 716 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puttabyatappa, M., Martin, J. D., Andriessen, V., Stevenson, M. & Zeng, L. Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod. Toxicol. 85, 110–122 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Garcia, E. et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J. Nutr. 134, 1806–1811 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abulehia, H. F. S., Nor, N. S. M. & Sheikh Abdul Kadir, S. H. The Current findings on the impact of prenatal BPA exposure on metabolic parameters: In vivo and epidemiological evidence. Nutrients 14, 2766 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeyemi, D. O., Komolafe, O. A., Adewole, O. S. & Obuotor, E. M. Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extracts of Annona muricata. Folia Morphol 69, 92–100 (2010).

    CAS 

    Google Scholar
     

  • Whitehead, R., Guan, H., Arany, E., Cernea, M. & Yang, K. Prenatal exposure to bisphenol A alters mouse fetal pancreatic morphology and islet composition. Horm. Mol. Biol. Clin. Investig. 25, 171–179 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Barker, D. J. P. The developmental origins of adult disease. Eur. J. Epidemiol. 18, 733–736 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wyatt, B. N. The Effects of Bisphenol A on Adipose Tissue Development, Metabolism, and Endocrine Function and the Role it May Play in the Development of Obesity (2011).

  • European Food Safety Authority (EFSA). Scientific and technical assistance on trans fatty acids. EFSA Support Publ. 15, 1433 (2018).


    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: