Friday, February 23, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

The evolving management of small renal masses – Nature Reviews Urology


  • Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, D. Y. & Uzzo, R. G. Evaluation and management of the renal mass. Med. Clin. North. Am. 95, 179–189 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Parsons, J. K., Schoenberg, M. S. & Carter, H. B. Incidental renal tumors: casting doubt on the efficacy of early intervention. Urology 57, 1013–1015 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Withington, J., Neves, J. B. & Barod, R. Surgical and minimally invasive therapies for the management of the small renal mass. Curr. Urol. Rep. 18, 61 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Robson, C. J., Churchill, B. M. & Anderson, W. The results of radical nephrectomy for renal cell carcinoma. J. Urol. 101, 297–301 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krabbe, L. M., Bagrodia, A., Margulis, V. & Wood, C. G. Surgical management of renal cell carcinoma. Semin. Interv. Radiol. 31, 27–32 (2014).

    Article 

    Google Scholar
     

  • Gill, I. S., Aron, M., Gervais, D. A. & Jewett, M. A. Clinical practice. Small renal mass. N. Engl. J. Med. 362, 624–634 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, S. C. et al. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part I. J. Urol. 206, 199–208 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Campbell, S. C. et al. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part II. J. Urol. 206, 209–218 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, H. J., Filson, C. P. & Litwin, M. S. Contemporary, age-based trends in the incidence and management of patients with early-stage kidney cancer. Urol. Oncol. 33, 21.e19–21.e26 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Venkatesan, A. M., Wood, B. J. & Gervais, D. A. Percutaneous ablation in the kidney. Radiology 261, 375–391 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. H. et al. Association of prevalence of benign pathologic findings after partial nephrectomy with preoperative imaging patterns in the United States from 2007 to 2014. JAMA Surg. 154, 225–231 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lane, B. R. et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J. Urol. 178, 429–434 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Srigley, J. R. et al. The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Finelli, A. et al. Management of small renal masses: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 35, 668–680 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Frank, I. et al. Solid renal tumors: an analysis of pathological features related to tumor size. J. Urol. 170, 2217–2220 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Herrera-Caceres, J. O., Finelli, A. & Jewett, M. A. S. Renal tumor biopsy: indicators, technique, safety, accuracy results, and impact on treatment decision management. World J. Urol. 37, 437–443 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Richard, P. O. et al. Is routine renal tumor biopsy associated with lower rates of benign histology following nephrectomy for small renal masses? J. Urol. 200, 731–736 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, S. et al. Declining incidence of benign lesions among small renal masses treated with surgery: effect of diagnostic tests for characterization. Urol. Oncol. 36, 362.e9–362.e15 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Peabody, H. et al. Development of a novel scoring system quantifies opportunities to reduce surgery for benign renal neoplasms: a retrospective quality improvement analysis within the MUSIC-KIDNEY collaborative. J. Urol. 204, 1160–1165 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jewett, M. A. et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur. Urol. 60, 39–44 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Organ, M. et al. Growth kinetics of small renal masses: a prospective analysis from the Renal Cell Carcinoma Consortium of Canada. Can. Urol. Assoc. J. 8, 24–27 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierorazio, P. M. et al. Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur. Urol. 68, 408–415 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Danzig, M. R. et al. Active surveillance for small renal masses: a review of the aims and preliminary results of the DISSRM registry. Curr. Urol. Rep. 17, 4 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Noyes, S. L. et al. Quality of care for renal masses: the Michigan Urological Surgery Improvement Collaborative-Kidney mass: Identifying & Defining Necessary Evaluation & therapy (MUSIC-KIDNEY). Urol. Pract. 7, 507–514 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Almassi, N., Gill, B. C., Rini, B. & Fareed, K. Management of the small renal mass. Transl. Androl. Urol. 6, 923–930 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kutikov, A. & Smaldone, M. C. The small renal mass and its management in urologic practice. Urol. Clin. North. Am. 44, xvii (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ristau, B. T., Correa, A. F., Uzzo, R. G. & Smaldone, M. C. Active surveillance for the small renal mass: growth kinetics and oncologic outcomes. Urol. Clin. North. Am. 44, 213–222 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tomaszewski, J. J. & Kutikov, A. Small renal mass management in the elderly and the calibration of risk. Urol. Oncol. 33, 197–200 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Menon, A. R. et al. Active surveillance for risk stratification of all small renal masses lacking predefined clinical criteria for intervention. J. Urol. 206, 229–239 (2021).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silagy, A. W. et al. Harnessing the genomic landscape of the small renal mass to guide clinical management. Eur. Urol. Focus. 5, 949–957 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khaleel, S. et al. Adverse pathologic features impact survival outcomes for small renal masses following nephrectomy. Urol. Oncol. 41, 391 e5–e11 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ljungberg, B. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. 82, 399–410 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Motzer, R. J. et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 71–90 (2022).

    Article 

    Google Scholar
     

  • Expert Panel on Urological Imaging. et al. ACR appropriateness criteria® staging of renal cell carcinoma: 2022 update. J. Am. Coll. Radiol. 20, S246–S264 (2023).

    Article 

    Google Scholar
     

  • Jiang, P. et al. A Review of the recommendations and strength of evidence for clinical practice guidelines on the management of small renal masses. J. Endourol. 37, 903–913 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Beyer, K., Barod, R., Fox, L., Van Hemelrijck, M. & Kinsella, N. The current evidence for factors that influence treatment decision making in localized kidney cancer: a mixed methods systematic review. J. Urol. 206, 827–839 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chandrasekar, T. et al. Collaborative review: factors influencing treatment decisions for patients with a localized solid renal mass. Eur. Urol. 80, 575–588 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Giles, R. et al. Patient-reported experience of diagnosis, management, and burden of renal cell carcinomas: results from a global patient survey in 43 countries. Eur. Urol. Open. Sci. 37, 3–6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breau, R. H., Crispen, P. L., Jenkins, S. M., Blute, M. L. & Leibovich, B. C. Treatment of patients with small renal masses: a survey of the American Urological Association. J. Urol. 185, 407–413 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, A. K. et al. Initial observation of a large proportion of patients presenting with clinical stage T1 renal masses: results from the MUSIC-KIDNEY statewide collaborative. Eur. Urol. Open. Sci. 23, 13–19 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mendhiratta, N. et al. Contemporary care patterns in the management of small renal masses. Am. J. Manag. Care 29, e143–e148 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ginsburg, K. B. et al. A Statewide quality improvement collaborative’s adherence to the 2017 American Urological Association Guidelines Regarding Initial Evaluation of Patients With Clinical T1 Renal Masses. Urology 158, 117–124 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Semerjian, A. et al. Guideline compliance regarding chest imaging of suspicious cT1 renal masses in MUSIC-KIDNEY. Urol. Pract. 10, 328–333 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, A. K. et al. Building a roadmap for surveillance of renal masses using a modified Delphi method to help achieve consensus. Urology 180, 768–175 (2023).

    Article 

    Google Scholar
     

  • Sanchez, A., Feldman, A. S. & Hakimi, A. A. Current management of small renal masses, including patient selection, renal tumor biopsy, active surveillance, and thermal ablation. J. Clin. Oncol. 36, 3591–3600 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kay, F. U. & Pedrosa, I. Imaging of solid renal masses. Radiol. Clin. North. Am. 55, 243–258 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Davenport, M. S. et al. Diagnosis of renal angiomyolipoma with Hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Radiology 260, 158–165 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Krishna, S., Leckie, A., Kielar, A., Hartman, R. & Khandelwal, A. Imaging of renal cancer. Semin. Ultrasound CT MR 41, 152–169 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Warshauer, D. M. et al. Detection of renal masses: sensitivities and specificities of excretory urography/linear tomography, US, and CT. Radiology 169, 363–365 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jamis-Dow, C. A. et al. Small (< or = 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology 198, 785–788 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silverman, S. G. et al. Bosniak classification of cystic renal masses, version 2019: an update proposal and needs assessment. Radiology 292, 475–488 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Warren, K. S. & McFarlane, J. The Bosniak classification of renal cystic masses. BJU Int. 95, 939–942 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Tse, J. R., Shen, L., Shen, J., Yoon, L. & Kamaya, A. Prevalence of malignancy and histopathological association of Bosniak classification, version 2019 class III and IV cystic renal masses. J. Urol. 205, 1031–1038 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Weinreb, J. C. et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 3, 142–150 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, H. D. et al. Diagnostic accuracy and risks of biopsy in the diagnosis of a renal mass suspicious for localized renal cell carcinoma: systematic review of the literature. J. Urol. 195, 1340–1347 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marconi, L. et al. Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur. Urol. 69, 660–673 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jeon, H. G. et al. Percutaneous kidney biopsy for a small renal mass: a critical appraisal of results. J. Urol. 195, 568–573 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Alrumayyan, M., Raveendran, L., Lawson, K. A. & Finelli, A. Cystic renal masses: old and new paradigms. Urol. Clin. North. Am. 50, 227–238 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Butaney, M. et al. Initial management of indeterminate renal lesions in a statewide collaborative: a MUSIC-KIDNEY analysis. J. Urol. 210, 79–87 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ginzburg, S. et al. Coexisting hybrid malignancy in a solitary sporadic solid benign renal mass: implications for treating patients following renal biopsy. J. Urol. 191, 296–300 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ball, M. W. et al. Grade heterogeneity in small renal masses: potential implications for renal mass biopsy. J. Urol. 193, 36–40 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Renshaw, A. A., Powell, A., Caso, J. & Gould, E. W. Needle track seeding in renal mass biopsies. Cancer Cytopathol. 127, 358–361 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shannon, B. A., Cohen, R. J., de Bruto, H. & Davies, R. J. The value of preoperative needle core biopsy for diagnosing benign lesions among small, incidentally detected renal masses. J. Urol. 180, 1257–1261 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sinks, A. et al. Renal mass biopsy mandate is associated with change in treatment decisions. J. Urol. 210, 72–78 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, A. K. et al. Utilization of renal mass biopsy for T1 renal lesions across Michigan: results from MUSIC-KIDNEY, a statewide quality improvement collaborative. Eur. Urol. Open. Sci. 30, 37–43 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prebay, Z. J. et al. Perspectives on the role of biopsy for management of t1 renal masses: survey results from two regional quality improvement collaboratives. Urology 165, 206–211 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kutikov, A. & Uzzo, R. G. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182, 844–853 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Joshi, S. S. & Uzzo, R. G. Renal tumor anatomic complexity: clinical implications for urologists. Urol. Clin. North. Am. 44, 179–187 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Veccia, A. et al. Predictive value of nephrometry scores in nephron-sparing surgery: a systematic review and meta-analysis. Eur. Urol. Focus. 6, 490–504 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ficarra, V. et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur. Urol. 56, 786–793 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hakky, T. S. et al. Zonal NePhRO scoring system: a superior renal tumor complexity classification model. Clin. Genitourin. Cancer 12, e13–e18 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tannus, M., Goldman, S. M. & Andreoni, C. Practical and intuitive surgical approach renal ranking to predict outcomes in the management of renal tumors: a novel score tool. J. Endourol. 28, 487–492 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. P. et al. National treatment trends among older patients with T1-localized renal cell carcinoma. Urol. Oncol. 35, 113 e15–e21 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Celtik, K. E. et al. Active surveillance for incidental renal mass in the octogenarian. World J. Urol. 35, 1089–1094 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Levey, A. S. et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 67, 2089–2100 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Lane, B. R., Campbell, S. C., Demirjian, S. & Fergany, A. F. Surgically induced chronic kidney disease may be associated with a lower risk of progression and mortality than medical chronic kidney disease. J. Urol. 189, 1649–1655 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lane, B. R. et al. Survival and functional stability in chronic kidney disease due to surgical removal of nephrons: importance of the new baseline glomerular filtration rate. Eur. Urol. 68, 996–1003 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Risk of chronic kidney disease after cancer nephrectomy. Nat. Rev. Nephrol. 10, 135–145 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, H. J. et al. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA 307, 1629–1635 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, M. et al. Management of localized kidney cancer: calculating cancer-specific mortality and competing risks of death for surgery and nonsurgical management. Eur. Urol. 65, 235–241 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tobert, C. M., Riedinger, C. B. & Lane, B. R. Do we know (or just believe) that partial nephrectomy leads to better survival than radical nephrectomy for renal cancer? World J. Urol. 32, 573–579 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Van Poppel, H. et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol. 59, 543–552 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Maher, E. R. Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J. Urol. 36, 1891–1898 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, C., Pan, S. & Shuch, B. Management of renal cell carcinoma in young patients and patients with hereditary syndromes. Curr. Opin. Urol. 26, 396–404 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Metcalf, M. R. et al. Outcomes of active surveillance for young patients with small renal masses: prospective data from the DISSRM registry. J. Urol. 205, 1286–1293 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kutikov, A. Surveillance of small renal masses in young patients: a viable option in the appropriate candidate. Eur. Urol. Focus 2, 567–568 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Doolittle, J. et al. Evolving trends for selected treatments of T1a renal cell carcinoma. Urology 132, 136–142 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mohapatra, A. et al. Trends in the management of small renal masses: a survey of members of the Endourological Society. J. Kidney Cancer VHL 4, 10–19 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alameddine, M. et al. Trends in utilization of robotic and open partial nephrectomy for management of cT1 renal masses. Eur. Urol. Focus. 5, 482–487 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cerrato, C. et al. Partial or radical nephrectomy for complex renal mass: a comparative analysis of oncological outcomes and complications from the ROSULA (Robotic Surgery for Large Renal Mass) Collaborative Group. World J. Urol. 41, 747–755 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Volpe, A. The role of active surveillance of small renal masses. Int. J. Surg. 36, 518–524 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Uzosike, A. C. et al. Growth kinetics of small renal masses on active surveillance: variability and results from the DISSRM registry. J. Urol. 199, 641–648 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Srivastava, A. et al. The incidence, predictors, and survival of disappearing small renal masses on active surveillance. Urol. Oncol. 38, 42.e1–e6 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kapur, P. et al. Predicting oncologic outcomes in small renal tumors. Eur. Urol. Oncol. 5, 687–694 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campi, R. et al. Triggers for delayed intervention in patients with small renal masses undergoing active surveillance: a systematic review. Minerva Urol. Nefrol. 72, 389–407 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, M. et al. Use of delayed intervention for small renal masses initially managed with active surveillance. Urol. Oncol. 37, 18–25 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alam, R. et al. Comparative effectiveness of management options for patients with small renal masses: a prospective cohort study. BJU Int. 123, 42–50 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, D. C. et al. A matched analysis of active surveillance versus nephrectomy for T1a small renal masses. Eur. Urol. Oncol. 6, 535–539 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Alam, R. et al. Evaluation of growth rates for small renal masses in elderly patients undergoing active surveillance. Eur. Urol. Open. Sci. 50, 78–84 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aron, M. & Gill, I. S. Minimally invasive nephron-sparing surgery (MINSS) for renal tumours. Part II: probe ablative therapy. Eur. Urol. 51, 348–357 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Aminsharifi, A., de la Rosette, J. & Polascik, T. J. Focal therapy of prostate and kidney cancer. Curr. Opin. Urol. 28, 491–492 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Matsumoto, E. D. et al. The radiographic evolution of radio frequency ablated renal tumors. J. Urol. 172, 45–48 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Matin, S. F. Determining failure after renal ablative therapy for renal cell carcinoma: false-negative and false-positive imaging findings. Urology 75, 1254–1257 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Pierorazio, P. M. et al. Management of renal masses and localized renal cancer: systematic review and meta-analysis. J. Urol. 196, 989–999 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blute, M. L. Jr et al. Image-guided percutaneous renal cryoablation: preoperative risk factors for recurrence and complications. BJU Int. 111, E181–E185 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Psutka, S. P. et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur. Urol. 63, 486–492 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Finley, D. S. et al. Percutaneous and laparoscopic cryoablation of small renal masses. J. Urol. 180, 492–498 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Okhunov, Z. et al. Predictors of complications after percutaneous image-guided renal cryoablation for T1a renal cortical neoplasms. J. Endourol. 31, 7–13 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Baker, M., Anderson, J. K., Jaffer, O., Trimmer, C. & Cadeddu, J. A. Pain after percutaneous radiofrequency ablation of renal tumors. J. Endourol. 21, 606–609 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, W., Herwald, S. E., McCarthy, C., Uppot, R. N. & Arellano, R. S. Radiofrequency ablation, cryoablation, and microwave ablation for t1a renal cell carcinoma: a comparative evaluation of therapeutic and renal function outcomes. J. Vasc. Interv. Radiol. 30, 1035–1042 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, B. A., Sorokin, I. & Cadeddu, J. A. Ten-year outcomes of renal tumor radio frequency ablation. J. Urol. 201, 251–258 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pickersgill, N. A. et al. Ten-year experience with percutaneous cryoablation of renal tumors: tumor size predicts disease progression. J. Endourol. 34, 1211–1217 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, R. H. et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur. Urol. 67, 252–259 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Uhlig, J., Kokabi, N., Xing, M. & Kim, H. S. Ablation versus resection for stage 1A renal cell carcinoma: national variation in clinical management and selected outcomes. Radiology 288, 889–897 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Jr Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192–S203 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Percutaneous microwave ablation versus laparoscopic partial nephrectomy for cT1a renal cell carcinoma: a propensity-matched cohort study of 1955 patients. Radiology 294, 698–706 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Maciolek, K. A. et al. Tumor location does not impact oncologic outcomes for percutaneous microwave ablation of clinical T1a renal cell carcinoma. Eur. Radiol. 29, 6319–6329 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wilcox Vanden Berg, R. N. et al. Microwave ablation of cT1a renal cell carcinoma: oncologic and functional outcomes at a single center. Clin. Imaging 76, 199–204 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wells, S. A. et al. Percutaneous microwave ablation of T1a and T1b renal cell carcinoma: short-term efficacy and complications with emphasis on tumor complexity and single session treatment. Abdom. Radiol. 41, 1203–1211 (2016).

    Article 

    Google Scholar
     

  • Jackson, W. C. et al. Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta-analysis of over 6,000 patients treated on prospective studies. Int. J. Radiat. Oncol. Biol. Phys. 104, 778–789 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rich, B. J., Noy, M. A. & Dal Pra, A. Stereotactic body radiotherapy for localized kidney cancer. Curr. Urol. Rep. 23, 371–381 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Haque, W. et al. Utilization of radiotherapy and stereotactic body radiation therapy for renal cell cancer in the USA. Future Oncol. 14, 819–827 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siva, S. et al. Stereotactic ablative body radiotherapy for inoperable primary kidney cancer: a prospective clinical trial. BJU Int. 120, 623–630 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Siva, S. et al. Pooled analysis of stereotactic ablative radiotherapy for primary renal cell carcinoma: a report from the International Radiosurgery Oncology Consortium for Kidney (IROCK). Cancer 124, 934–942 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, R. A., Strauss, D. & Kutikov, A. Role of minimally invasive partial nephrectomy in the management of renal mass. Transl. Androl. Urol. 9, 3140–3148 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, K. et al. Partial nephrectomy should be classified as an inpatient procedure: results from a statewide quality improvement collaborative. Urol. Oncol. 39, 239 e9–e16 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Volpe, A. et al. Renal ischemia and function after partial nephrectomy: a collaborative review of the literature. Eur. Urol. 68, 61–74 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Parekh, D. J. et al. Tolerance of the human kidney to isolated controlled ischemia. J. Am. Soc. Nephrol. 24, 506–517 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmons, M. N., Lieser, G. C., Fergany, A. F., Kaouk, J. & Campbell, S. C. Association between warm ischemia time and renal parenchymal atrophy after partial nephrectomy. J. Urol. 189, 1638–1642 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cacciamani, G. E. et al. Impact of renal hilar control on outcomes of robotic partial nephrectomy: systematic review and cumulative meta-analysis. Eur. Urol. Focus. 5, 619–635 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Greco, F. et al. Ischemia techniques in nephron-sparing surgery: a systematic review and meta-analysis of surgical, oncological, and functional outcomes. Eur. Urol. 75, 477–491 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ginzburg, S. et al. Residual parenchymal volume, not warm ischemia time, predicts ultimate renal functional outcomes in patients undergoing partial nephrectomy. Urology 86, 300–305 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Minervini, A. et al. Standardized reporting of resection technique during nephron-sparing surgery: the surface-intermediate-base margin score. Eur. Urol. 66, 803–805 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Minervini, A. et al. Impact of resection technique on perioperative outcomes and surgical margins after partial nephrectomy for localized renal masses: a prospective multicenter study. J. Urol. 203, 496–504 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Minervini, A. et al. Simple enucleation is equivalent to traditional partial nephrectomy for renal cell carcinoma: results of a nonrandomized, retrospective, comparative study. J. Urol. 185, 1604–1610 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Longo, N. et al. Simple enucleation versus standard partial nephrectomy for clinical T1 renal masses: perioperative outcomes based on a matched-pair comparison of 396 patients (RECORd project). Eur. J. Surg. Oncol. 40, 762–768 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiavina, R. et al. A prospective, multicenter evaluation of predictive factors for positive surgical margins after nephron-sparing surgery for renal cell carcinoma: the RECORd1 Italian Project. Clin. Genitourin. Cancer 13, 165–170 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, G. N., Boris, R. S., Campbell, S. C. & Zhang, Z. Tumor enucleation for sporadic localized kidney cancer: pro and con. J. Urol. 194, 623–625 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Butaney, M. et al. Positive surgical margins in partial nephrectomy: a collaborative effort to maintain surgical quality. BJU Int. 179, 2158–2163 (2023).


    Google Scholar
     

  • Arora, S. et al. Retroperitoneal vs transperitoneal robot-assisted partial nephrectomy: comparison in a multi-institutional setting. Urology 120, 131–137 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bahler, C. D. & Sundaram, C. P. Effect of renal reconstruction on renal function after partial nephrectomy. J. Endourol. 30, S37–S41 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Carbonara, U. et al. Single-port robotic partial nephrectomy: impact on perioperative outcomes and hospital stay. Ther. Adv. Urol. 15, 17562872231172834 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, R. A. et al. Partial versus radical nephrectomy: complexity of decision-making and utility of AUA guidelines. Clin. Genitourin. Cancer 20, 501–509 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schmid, M. et al. Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Urol. Oncol. 32, 1259–1266 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, H. D. et al. Renal functional outcomes after surgery, ablation, and active surveillance of localized renal tumors: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 12, 1057–1069 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scosyrev, E., Messing, E. M., Sylvester, R., Campbell, S. & Van Poppel, H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur. Urol. 65, 372–377 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • An, J. Y. et al. Partial vs radical nephrectomy for T1–T2 renal masses in the elderly: comparison of complications, renal function, and oncologic outcomes. Urology 100, 151–157 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bergerot, C. D. et al. Fear of cancer recurrence in patients with localized renal cell carcinoma. JCO Oncol. Pract. 16, e1264–e1271 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Campi, R. et al. Novel liquid biomarkers and innovative imaging for kidney cancer diagnosis: what can be implemented in our practice today? A systematic review of the literature. Eur. Urol. Oncol. 4, 22–41 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • McGillivray, P. D. et al. Distinguishing benign renal tumors with an oncocytic gene expression (ONEX) classifier. Eur. Urol. 79, 107–111 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooks, S. A. et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rini, B. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 16, 676–685 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgan, T. M. et al. A multigene signature based on cell cycle proliferation improves prediction of mortality within 5 Yr of radical nephrectomy for renal cell carcinoma. Eur. Urol. 73, 763–769 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manley, B. J. et al. Characterizing recurrent and lethal small renal masses in clear cell renal cell carcinoma using recurrent somatic mutations. Urol. Oncol. 37, 12–17 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Manley, B. J. et al. Integration of recurrent somatic mutations with clinical outcomes: a pooled analysis of 1049 patients with clear cell renal cell carcinoma. Eur. Urol. Focus. 3, 421–427 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Moynihan, M. J. et al. MicroRNA profile in stage I clear cell renal cell carcinoma predicts progression to metastatic disease. Urol. Oncol. 38, 799 e11–e22 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Quaia, E. et al. Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex cystic renal masses. AJR Am. J. Roentgenol. 191, 1239–1249 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, S. P. et al. Contrast-enhanced ultrasound for differentiating benign from malignant solid small renal masses: comparison with contrast-enhanced CT. Abdom. Radiol. 42, 2135–2145 (2017).

    Article 

    Google Scholar
     

  • Su, Z. T. et al. Cost-effectiveness analysis of 99mTc-sestamibi SPECT/CT to guide management of small renal masses. Eur. Urol. Focus 7, 827–834 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tataru, O. S. et al. Molecular imaging diagnosis of renal cancer using 99mTc-sestamibi SPECT/CT and girentuximab PET-CT — current evidence and future development of novel techniques. Diagnostics 13, 593 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roussel, E. et al. Novel imaging methods for renal mass characterization: a collaborative review. Eur. Urol. 81, 476–488 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastorekova, S. & Gillies, R. J. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 38, 65–77 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z., Wu, B., Shao, Y., Chen, Y. & Wang, D. A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer. PLoS One 17, e0278556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Oostenbrugge, T. & Mulders, P. Targeted PET/CT imaging for clear cell renal cell carcinoma with radiolabeled antibodies: recent developments using girentuximab. Curr. Opin. Urol. 31, 249–254 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hekman, M. C. H. et al. Positron emission tomography/computed tomography with 89Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur. Urol. 74, 257–260 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Verhoeff, S. R. et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin. Cancer Res. 29, 592–601 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verhoeff, S. R. et al. Lesion detection by [89Zr]Zr-DFO-girentuximab and [18F]FDG-PET/CT in patients with newly diagnosed metastatic renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 46, 1931–1939 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassiri, N. et al. A radiomic-based machine learning algorithm to reliably differentiate benign renal masses from renal cell carcinoma. Eur. Urol. Focus. 8, 988–994 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Han, S., Hwang, S. I. & Lee, H. J. The classification of renal cancer in 3-phase CT images using a deep learning method. J. Digit. Imaging 32, 638–643 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, F., Cui, E. M., Lei, Y. & Luo, L. P. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom. Radiol. 44, 2528–2534 (2019).

    Article 

    Google Scholar
     

  • Said, D. et al. Characterization of solid renal neoplasms using MRI-based quantitative radiomics features. Abdom. Radiol. 45, 2840–2850 (2020).

    Article 

    Google Scholar
     

  • Abdallah, N. et al. AI-generated R.E.N.A.L.+ score surpasses human-generated score in predicting renal oncologic outcomes. Urology 180, 160–167 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Heller, N. et al. Computer-generated R.E.N.A.L. nephrometry scores yield comparable predictive results to those of human-expert scores in predicting oncologic and perioperative outcomes. J. Urol. 207, 1105–1115 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles