Thursday, June 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

The glymphatic system’s role in traumatic brain injury-related neurodegeneration – Molecular Psychiatry


  • Martland HS. Punch drunk. J Am Med Assoc. 1928;91:1103–7.

  • Critchley M. Medical aspects of boxing, particularly from a neurological standpoint. Br Med J. 1957;1:357–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131:75–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bieniek KF, Cairns NJ, Crary JF, Dickson DW, Folkerth RD, Keene CD, et al. The second NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2021;80:210–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90:1221–33.

    Article 
    PubMed 

    Google Scholar
     

  • LoBue C, Cullum CM, Didehbani N, Yeatman K, Jones B, Kraut MA, et al. Neurodegenerative dementias after traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2018;30:7–13.

    Article 
    PubMed 

    Google Scholar
     

  • McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13:287–300.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Washington PM, Villapol S, Burns MP. Polypathology and dementia after brain trauma: does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp Neurol. 2016;275:381–8.

    Article 
    PubMed 

    Google Scholar
     

  • Williamson MLC, Elliott TR, Bogner J, Dreer LE, Arango-Lasprilla JC, Kolakowsky-Hayner SA, et al. Trajectories of life satisfaction over the first 10 years after traumatic brain injury: race, gender, and functional ability. J Head Trauma Rehabil. 2016;31:167–79.

    Article 
    PubMed 

    Google Scholar
     

  • Juengst SB, Adams LM, Bogner JA, Arenth PM, O’Neil-Pirozzi TM, Dreer LE, et al. Trajectories of life satisfaction after traumatic brain injury: influence of life roles, age, cognitive disability, and depressive symptoms. Rehabil Psychol. 2015;60:353–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:147ra111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17:1016–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolte AC, Lukens JR. Neuroimmune cleanup crews in brain injury. Trends Immunol. 2021;42:480–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:572.

    Article 
    PubMed 

    Google Scholar
     

  • Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, et al. White matter damage after traumatic brain injury: a role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2614–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tehse J, Taghibiglou C. The overlooked aspect of excitotoxicity: glutamate-independent excitotoxicity in traumatic brain injuries. Eur J Neurosci. 2019;49:1157–70.

    PubMed 

    Google Scholar
     

  • Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK. Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord Drug Targets. 2018;17:689–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahel PF, Morganti-Kossmann MC, Perez D, Redaelli C, Gloor B, Trentz O, et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury. J Neurotrauma. 2001;18:773–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akeret K, Buzzi RM, Schaer CA, Thomson BR, Vallelian F, Wang S, et al. Cerebrospinal fluid hemoglobin drives subarachnoid hemorrhage-related secondary brain injury. J Cereb Blood Flow Metab. 2021;41:3000–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I. Traumatic brain injury induces tau aggregation and spreading. J Neurotrauma. 2020;37:80–92.

    Article 
    PubMed 

    Google Scholar
     

  • Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci. 2010;11:361–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polymenidou M, Cleveland DW. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med. 2012;209:889–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron. 2010;68:428–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woerman AL, Aoyagi A, Patel S, Kazmi SA, Lobach I, Grinberg LT, et al. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci USA. 2016;113:E8187–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman S, Izzy S, Sen P, Morsett L, el Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2009;8:16–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pop V, Sorensen DW, Kamper JE, Ajao DO, Murphy MP, Head E, et al. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab. 2013;33:205–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun. 2020;11:4524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta. 2016;1862:442–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser K, Bryja V. Choroid plexus: the orchestrator of long-range signalling within the CNS. Int J Mol Sci. 2020;21:4760.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11:26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feinberg DA, Mark AS. Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987;163:793–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J. Inspiration is the major regulator of human CSF flow. J Neurosci. 2015;35:2485–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen EA, Romanova L, Janson C, Lam CH. The effects of blood and blood products on the arachnoid cell. Exp Brain Res. 2017;235:1749–58.

    Article 
    PubMed 

    Google Scholar
     

  • Dalkara T. Cerebral Microcirculation: an introduction | SpringerLink. 2022. https://link.springer.com/referenceworkentry/10.1007/978-3-642-37078-6_29.

  • Tuma RF. The cerebral microcirculation. Microcirculation. 2nd Edition. 2008:485–520.

  • Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front Neuroanat. 2017;11:101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34:131–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131:725–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faghih MM, Sharp MK. Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS. 2018;15:17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hershenhouse KS, Shauly O, Gould DJ, Patel KM. Meningeal lymphatics: a review and future directions from a clinical perspective. Neurosci Insights. 2019;14:1179069519889027.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yankova G, Bogomyakova O, Tulupov A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev Neurosci. 2021;32:693–705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nedergaard M. Neuroscience. Garbage truck of the brain. Science. 2013;340:1529–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011;8:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58:1094–103.

    Article 
    PubMed 

    Google Scholar
     

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. J Neurosci. 2003;23:9254–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salman MM, Kitchen P, Halsey A, Wang MX, Törnroth-Horsefield S, Conner AC, et al. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain. 2022;145:64–75.

    Article 
    PubMed 

    Google Scholar
     

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17:171–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci USA. 2001;98:14108–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiry-Moghaddam M, Frydenlund DS, Ottersen OP. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience. 2004;129:999–1010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral microcirculation, perivascular unit, and glymphatic system: role of aquaporin-4 as the gatekeeper for water homeostasis. Front Neurol. 2021;12:767470.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moshkforoush A, Ashenagar B, Harraz OF, Dabertrand F, Longden TA, Nelson MT, et al. The capillary Kir channel as sensor and amplifier of neuronal signals: modeling insights on K+-mediated neurovascular communication. Proc Natl Acad Sci USA. 2020;117:16626–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacAulay N. Molecular mechanisms of K+ clearance and extracellular space shrinkage-glia cells as the stars. Glia. 2020;68:2192–211.

    PubMed 

    Google Scholar
     

  • Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021;24:1198–209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benveniste H, Heerdt PM, Fontes M, Rothman DL, Volkow ND. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg. 2019;128:747–58.

    Article 
    PubMed 

    Google Scholar
     

  • Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366:628–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy OC, van der Werf YD. The sleeping brain: harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10:868.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myung J, Wu D, Simonneaux V, Lane TJ. Strong circadian rhythms in the choroid plexus: implications for sleep-independent brain metabolite clearance. J Exp Neurosci. 2018;12:1179069518783762.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen J, Li C, Mychasiuk R. Choroid plexus function in neurological homeostasis and disorders: the awakening of the circadian clocks and orexins. J Cereb Blood Flow Metab. 2022;42:1163–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Chopp M, Ding G, Davoodi-Bojd E, Zhang L, Li Q, et al. MRI detection of impairment of glymphatic function in rat after mild traumatic brain injury. Brain Res. 2020;1747:147062.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen J, Wright DK, Yamakawa GR, Shultz SR, Mychasiuk R. Repetitive mild traumatic brain injury alters glymphatic clearance rates in limbic structures of adolescent female rats. Sci Rep. 2020;10:6254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gama Sosa MA, de Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, et al. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun. 2021;9:167.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33:834–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Xie Y, Wan X, Wu J, Fan Z, Yang L. Protective effects of aquaporin-4 deficiency on longer-term neurological outcomes in a mouse model. Neurochem Res. 2021;46:1380–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katada R, Akdemir G, Asavapanumas N, Ratelade J, Zhang H, Verkman AS. Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J. 2014;28:705–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez J, Berezuk C, McNeely AA, Gao F, McLaurin J, Black SE. Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:289–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doubal FN, MacLullich AMJ, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke. 2010;41:450–4.

    Article 
    PubMed 

    Google Scholar
     

  • Bokura H, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol. 1998;245:116–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams HHH, Cavalieri M, Verhaaren BFJ, Bos D, van der Lugt A, Enzinger C, et al. Rating method for dilated Virchow-Robin spaces on magnetic resonance imaging. Stroke. 2013;44:1732–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilal S, Tan CS, Adams HHH, Habes M, Mok V, Venketasubramanian N, et al. Enlarged perivascular spaces and cognition: a meta-analysis of 5 population-based studies. Neurology. 2018;91:e832–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilor-Tejedor N, Ciampa I, Operto G, Falcón C, Suárez-Calvet M, Crous-Bou M, et al. Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum. Alzheimers Res Ther. 2021;13:135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu Y, Zhuo W, Peng J, Huang R, Li B, Liu Y, et al. The correlation between enlarged perivascular spaces and cognitive impairment in Parkinson’s disease and vascular parkinsonism. BMC Neurol. 2022;22:282.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691–705.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn SJ, Taoka T, Moon W-J, Naganawa S. Contrast-enhanced fluid-attenuated inversion recovery in neuroimaging: a narrative review on clinical applications and technical advances. J Magn Reson Imaging. 2022;56:341–53.

    Article 
    PubMed 

    Google Scholar
     

  • Wong SM, Backes WH, Drenthen GS, Zhang CE, Voorter PHM, Staals J, et al. Spectral diffusion analysis of intravoxel incoherent motion MRI in cerebral small vessel disease. J Magn Reson Imaging. 2020;51:1170–80.

    Article 
    PubMed 

    Google Scholar
     

  • Huang J, van Zijl PCM, Han X, Dong CM, Cheng GWY, Tse K-H, et al. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer’s disease detected by dynamic glucose-enhanced MRI. Sci Adv. 2020;6:eaba3884.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiviniemi V, Wang X, Korhonen V, Keinänen T, Tuovinen T, Autio J, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity—glymphatic pulsation mechanisms? J Cereb Blood Flow Metab. 2016;36:1033–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newell DW, Nedergaard M, Aaslid R. Physiological mechanisms and significance of intracranial B waves. Front Neurol. 2022;13:872701.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piantino JA, Iliff JJ, Lim MM. The bidirectional link between sleep disturbances and traumatic brain injury symptoms: a role for glymphatic dysfunction? Biol Psychiatry. 2022;91:478–87.

    Article 
    PubMed 

    Google Scholar
     

  • Christensen J, Yamakawa GR, Shultz SR, Mychasiuk R. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Prog Neurobiol. 2021;198:101917.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathias JL, Alvaro PK. Prevalence of sleep disturbances, disorders, and problems following traumatic brain injury: a meta-analysis. Sleep Med. 2012;13:898–905.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parcell DL, Ponsford JL, Redman JR, Rajaratnam SM. Poor sleep quality and changes in objectively recorded sleep after traumatic brain injury: a preliminary study. Arch Phys Med Rehabil. 2008;89:843–50.

    Article 
    PubMed 

    Google Scholar
     

  • Chaput G, Giguère J-F, Chauny J-M, Denis R, Lavigne G. Relationship among subjective sleep complaints, headaches, and mood alterations following a mild traumatic brain injury. Sleep Med. 2009;10:713–6.

    Article 
    PubMed 

    Google Scholar
     

  • Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, et al. Sleep, sleep disorders, and mild traumatic brain injury. What we know and what we need to know: findings from a National Working Group. Neurotherapeutics. 2016;13:403–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piantino J, Lim MM, Newgard CD, Iliff J. Linking traumatic brain injury, sleep disruption and post-traumatic headache: a potential role for glymphatic pathway dysfunction. Curr Pain Headache Rep. 2019;23:62.

    Article 
    PubMed 

    Google Scholar
     

  • Sandsmark DK, Elliott JE, Lim MM. Sleep-wake disturbances after traumatic brain injury: synthesis of human and animal studies. Sleep. 2017;40:zsx044.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Opel RA, Christy A, Boespflug EL, Weymann KB, Case B, Pollock JM, et al. Effects of traumatic brain injury on sleep and enlarged perivascular spaces. J Cereb Blood Flow Metab. 2019;39:2258–67.

    Article 
    PubMed 

    Google Scholar
     

  • Piantino J, Schwartz DL, Luther M, Newgard C, Silbert L, Raskind M, et al. Link between mild traumatic brain injury, poor sleep, and magnetic resonance imaging: visible perivascular spaces in veterans. J Neurotrauma. 2021;38:2391–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondello S, Muller U, Jeromin A, Streeter J, Hayes RL, Wang KKW. Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn. 2011;11:65–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2:492–516.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald SJ, Shultz SR, Agoston DV. The known unknowns: an overview of the state of blood-based protein biomarkers of mild traumatic brain injury. J Neurotrauma. 2021;38:2652–66.

    Article 
    PubMed 

    Google Scholar
     

  • Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35:518–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plog BA, Nedergaard M. Why have we not yet developed a simple blood test for TBI? Expert Rev Neurother. 2015;15:465–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindblad C, Nelson DW, Zeiler FA, Ercole A, Ghatan PH, von Horn H, et al. Influence of blood-brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: a longitudinal prospective study. J Neurotrauma. 2020;37:1381–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murcko R, Marchi N, Bailey D, Janigro D. Diagnostic biomarker kinetics: how brain-derived biomarkers distribute through the human body, and how this affects their diagnostic significance: the case of S100B. Fluids Barriers CNS. 2022;19:32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, et al. Glymphatic system: emerging therapeutic target for neurological diseases. Oxid Med Cell Longev. 2022;2022:6189170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun B-L, Wang L-H, Yang T, Sun J-Y, Mao L-L, Yang M-F, et al. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol. 2018;163-4:118–43.

    Article 

    Google Scholar
     

  • Cherian I, Bernardo A, Grasso G. Cisternostomy for traumatic brain injury: pathophysiologic mechanisms and surgical technical notes. World Neurosurg. 2016;89:51–7.

    Article 
    PubMed 

    Google Scholar
     

  • Cherian I, Burhan H, Dashevskiy G, Motta SJH, Parthiban J, Wang Y, et al. Cisternostomy: a timely intervention in moderate to severe traumatic brain injuries: rationale, indications, and prospects. World Neurosurg. 2019;131:385–90.

    Article 
    PubMed 

    Google Scholar
     

  • Goyal N, Kumar P. Putting ‘CSF-Shift Edema’ hypothesis to test: comparing cisternal and parenchymal pressures after basal cisternostomy for head injury. World Neurosurg. 2021;148:e252–63.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of stem cell treatment for traumatic brain injury. Front Cell Neurosci. 2019;13:301.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang E, Wan X, Yang L, Wang D, Chen Z, Chen Y, et al. Omega-3 polyunsaturated fatty acids alleviate traumatic brain injury by regulating the glymphatic pathway in mice. Front Neurol. 2020;11:707.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannan G, Kambhampati SP, Kudchadkar SR. Effect of anesthetics on microglial activation and nanoparticle uptake: implications for drug delivery in traumatic brain injury. J Control Release. 2017;263:192–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachdeva S, Persaud S, Patel M, Popard P, Colverson A, Doré S. Effects of sound interventions on the permeability of the blood-brain barrier and meningeal lymphatic clearance. Brain Sci. 2022;12:742.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guernsey DT, Leder A, Yao S. Resolution of concussion symptoms after osteopathic manipulative treatment: a case report. J Am Osteopath Assoc. 2016;116:e13–7.

    PubMed 

    Google Scholar
     

  • Kratz SV. Case report: Manual therapies promote resolution of persistent post-concussion symptoms in a 24-year-old athlete. SAGE Open Med Case Rep. 2021;9:2050313X20952224.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kashyap S, Brazdzionis J, Savla P, Berry JA, Farr S, Patchana T, et al. Osteopathic manipulative treatment to optimize the glymphatic environment in severe traumatic brain injury measured with optic nerve sheath diameter, intracranial pressure monitoring, and neurological pupil index. Cureus. 2021;13:e13823.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener. 2015;10:58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74:91–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 2019;8:7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanaan NM, Cox K, Alvarez VE, Stein TD, Poncil S, McKee AC. Characterization of early pathological tau conformations and phosphorylation in chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2016;75:19–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: