Sunday, March 3, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

The lncRNA Snhg11, a new candidate contributing to neurogenesis, plasticity, and memory deficits in Down syndrome – Molecular Psychiatry


  • Pennington BF, Moon J, Edgin J, Stedron J, Nadel L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 2003;74:75–93.

    PubMed 

    Google Scholar
     

  • Nadel L. Down’s syndrome: a genetic disorder in biobehavioral perspective. Genes Brain Behav. 2003;2:156–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Contestabile A, Fila T, Ceccarelli C, Bonasoni P, Bonapace L, Santini D, et al. Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice. Hippocampus. 2007;17:665–78.

    PubMed 

    Google Scholar
     

  • Dierssen M. Down syndrome: the brain in trisomic mode. Nat Rev Neurosci. 2012;13:844–58.

    CAS 
    PubMed 

    Google Scholar
     

  • De Toma I, Sierra C, Dierssen M. Meta-analysis of transcriptomic data reveals clusters of consistently deregulated gene and disease ontologies in Down syndrome. PLoS Comput Biol. 2021;17:e1009317.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendioroz M, Do C, Jiang X, Liu C, Darbary HK, Lang CF, et al. Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol. 2015;16:263.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Hajj N, Dittrich M, Bock J, Kraus TF, Nanda I, Muller T, et al. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics. 2016;11:563–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015;14:491–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puente-Bedia A, Berciano MT, Tapia O, Martinez-Cue C, Lafarga M, Rueda N. Nuclear reorganization in hippocampal granule cell neurons from a mouse model of down syndrome: changes in chromatin configuration, nucleoli and cajal bodies. Int J Mol Sci. 2021;22:1259.

  • De Toma I, Ortega M, Catuara-Solarz S, Sierra C, Sabido E, Dierssen M. Re-establishment of the epigenetic state and rescue of kinome deregulation in Ts65Dn mice upon treatment with green tea extract and environmental enrichment. Sci Rep. 2020;10:16023.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Muskens IS, Li S, Jackson T, Elliot N, Hansen HM, Myint SS, et al. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat Commun. 2021;12:821.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Antonarakis SE. Down syndrome and the complexity of genome dosage imbalance. Nat Rev Genet. 2017;18:147–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Qiu JJ, Liu YN, Ren ZR, Yan JB. Dysfunctions of mitochondria in close association with strong perturbation of long noncoding RNAs expression in down syndrome. Int J Biochem Cell Biol. 2017;92:115–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma W, Liu Y, Ma H, Ren Z, Yan J. Cis-acting: A pattern of lncRNAs for gene regulation in induced pluripotent stem cells from patients with Down syndrome determined by integrative analysis of lncRNA and mRNA profiling data. Exp Ther Med. 2021;22:701.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salemi M, Cannarella R, Marchese G, Salluzzo MG, Ravo M, Barone C, et al. Role of long non-coding RNAs in Down syndrome patients: a transcriptome analysis study. Hum Cell. 2021;34:1662–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiatry. 2015;78:848–59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grinman E, Espadas I, Puthanveettil SV. Emerging roles for long noncoding RNAs in learning, memory and associated disorders. Neurobiol Learn Mem. 2019;163:107034.

    CAS 
    PubMed 

    Google Scholar
     

  • Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell. 2013;12:616–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peschansky VJ, Pastori C, Zeier Z, Wentzel K, Velmeshev D, Magistri M, et al. The long non-coding RNA FMR4 promotes proliferation of human neural precursor cells and epigenetic regulation of gene expression in trans. Mol Cell Neurosci. 2016;74:49–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J, et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature. 2014;508:345–50.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, et al. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet. 2007;16:1359–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, et al. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2012;45:902–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Rueda N, Mostany R, Pazos A, Florez J, Martinez-Cue C. Cell proliferation is reduced in the dentate gyrus of aged but not young Ts65Dn mice, a model of Down syndrome. Neurosci Lett. 2005;380:197–201.

    CAS 
    PubMed 

    Google Scholar
     

  • Trazzi S, Mitrugno VM, Valli E, Fuchs C, Rizzi S, Guidi S, et al. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum Mol Genet. 2011;20:1560–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi P, Ciani E, Contestabile A, Guidi S, Bartesaghi R. Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome. Brain Pathol. 2010;20:106–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Investig. 2021;131:e135763.

  • Noh K, Lee H, Choi TY, Joo Y, Kim SJ, Kim H, et al. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry. 2019;24:1189–205.

    CAS 
    PubMed 

    Google Scholar
     

  • Del Toro D, Ruff T, Cederfjall E, Villalba A, Seyit-Bremer G, Borrell V, et al. Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell. 2017;169:621–35.e616.

    PubMed 

    Google Scholar
     

  • Chakrabarti L, Best TK, Cramer NP, Carney RS, Isaac JT, Galdzicki Z, et al. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat Neurosci. 2010;13:927–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez S, Gilabert-Juan J, Blasco-Ibanez JM, Crespo C, Nacher J, Varea E. Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn. Neuropeptides. 2012;46:29–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez-Gonzalez S, Ballestin R, Lopez-Hidalgo R, Gilabert-Juan J, Blasco-Ibanez JM, Crespo C, et al. Altered distribution of hippocampal interneurons in the murine Down Syndrome model Ts65Dn. Neurochem Res. 2015;40:151–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Contestabile A, Magara S, Cancedda L. The GABAergic hypothesis for cognitive disabilities in Down syndrome. Front Cell Neurosci. 2017;11:54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Perez-Jurado LA, Lehrach H, et al. Meta-analysis of heterogeneous Down syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genom. 2011;12:229.


    Google Scholar
     

  • Beacher F, Simmons A, Daly E, Prasher V, Adams C, Margallo-Lana ML, et al. Hippocampal myo-inositol and cognitive ability in adults with Down syndrome: an in vivo proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2005;62:1360–5.

    PubMed 

    Google Scholar
     

  • Ahn EY, DeKelver RC, Lo MC, Nguyen TA, Matsuura S, Boyapati A, et al. SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell. 2011;42:185–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berto GE, Iobbi C, Camera P, Scarpa E, Iampietro C, Bianchi F, et al. The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. PLoS One. 2014;9:e93721.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Angerer P, Fischer DS, Theis FJ, Scialdone A, Marr C. Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data. Bioinformatics. 2020;36:4291–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angerer P, Haghverdi L, Buttner M, Theis FJ, Marr C, Buettner F. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2016;32:1241–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci. 2018;21:290–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Deng W, Saxe MD, Gallina IS, Gage FH. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29:13532–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130:843–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Tronel S, Charrier V, Sage C, Maitre M, Leste-Lasserre T, Abrous DN. Adult-born dentate neurons are recruited in both spatial memory encoding and retrieval. Hippocampus. 2015;25:1472–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol. 2020;10:389.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Ma J, Wei J, Meng W, Wang Y, Shi M. lncRNA SNHG11 promotes gastric cancer progression by activating the wnt/beta-catenin pathway and oncogenic autophagy. Mol Ther. 2021;29:1258–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Dong S, Cha Y, Yuan X. SNHG11 promotes cell proliferation in colorectal cancer by forming a positive regulatory loop with c-Myc. Biochem Biophys Res Commun. 2020;527:985–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020;235:7541–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Geng YB, Xu C, Wang Y, Zhang LW. Long non-coding RNA SNHG11 promotes cell proliferation, invasion and migration in glioma by targeting miR-154-5p. Eur Rev Med Pharm Sci. 2020;24:4901–8.


    Google Scholar
     

  • Yu L, Zhang W, Wang P, Zhang Q, Cong A, Yang X, et al. LncRNA SNHG11 aggravates cell proliferation and migration in triple-negative breast cancer via sponging miR-2355-5p and targeting CBX5. Exp Ther Med. 2021;22:892.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begik O, Lucas MC, Pryszcz LP, Ramirez JM, Medina R, Milenkovic I, et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol. 2021;39:1278–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, et al. The protein tyrosine phosphatase receptor delta regulates developmental neurogenesis. Cell Rep. 2020;30:215–28.e215.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Murphy JG, Karlsson RM, Petralia RS, Gutzmann JJ, Abebe D, et al. DPP6 loss impacts hippocampal synaptic development and induces behavioral impairments in recognition, learning and memory. Front Cell Neurosci. 2018;12:84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rolls ET. A computational theory of episodic memory formation in the hippocampus. Behav Brain Res. 2010;215:180–96.

    PubMed 

    Google Scholar
     

  • Rolls ET, Kesner RP. A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol. 2006;79:1–48.

    CAS 
    PubMed 

    Google Scholar
     

  • van Hagen BT, van Goethem NP, Lagatta DC, Prickaerts J. The object pattern separation (OPS) task: a behavioral paradigm derived from the object recognition task. Behav Brain Res. 2015;285:44–52.

    PubMed 

    Google Scholar
     

  • Kazuki Y, Gao FJ, Li Y, Moyer AJ, Devenney B, Hiramatsu K, et al. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. Elife. 2020;9:e56223.

  • O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science. 2005;309:2033–7.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sheltzer JM, Torres EM, Dunham MJ, Amon A. Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA. 2012;109:12644–9.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Durrbaum M, Kuznetsova AY, Passerini V, Stingele S, Stoehr G, Storchova Z. Unique features of the transcriptional response to model aneuploidy in human cells. BMC Genom. 2014;15:139.


    Google Scholar
     

  • Nizetic D, Chen CL, Hong W, Koo EH. Inter-dependent mechanisms behind cognitive dysfunction, vascular biology and Alzheimer’s dementia in down syndrome: multi-faceted roles of APP. Front Behav Neurosci. 2015;9:299.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda AM, Herman M, Cheng R, Nahmani E, Barrett G, Micevska E, et al. Excess synaptojanin 1 contributes to place cell dysfunction and memory deficits in the aging hippocampus in three types of Alzheimer’s disease. Cell Rep. 2018;23:2967–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Bouhours M, Gracheva EO, Liao EH, Xu K, Sengar AS, et al. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1. Traffic. 2008;9:742–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron. 2003;40:733–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Kohli MA, Cukier HN, Hamilton-Nelson KL, Rolati S, Kunkle BW, Whitehead PL, et al. Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease. Neurol Genet. 2016;2:e41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973–7.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Stagni F, Bartesaghi R. The challenging pathway of treatment for neurogenesis impairment in down syndrome: achievements and perspectives. Front Cell Neurosci. 2022;16:903729.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorenzi HA, Reeves RH. Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res. 2006;1104:153–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Karlsen AS, Pakkenberg B. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome-a stereological study. Cereb Cortex. 2011;21:2519–24.

    PubMed 

    Google Scholar
     

  • Clark S, Schwalbe J, Stasko MR, Yarowsky PJ, Costa AC. Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp Neurol. 2006;200:256–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Mittwoch U. Mongolism and sex: a common problem of cell proliferation? J Med Genet. 1972;9:92–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagihara H, Takao K, Walton NM, Matsumoto M, Miyakawa T. Immature dentate gyrus: an endophenotype of neuropsychiatric disorders. Neural Plast. 2013;2013:318596.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain. 2008;1:6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohira K, Kobayashi K, Toyama K, Nakamura HK, Shoji H, Takao K, et al. Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice. Mol Brain. 2013;6:12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Wang Y, Wang C, Hu JF, Li W. LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front Genet. 2020;11:277.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Mishra P, Kumar S. Association of lncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metab Brain Dis. 2021;36:849–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Penzo M, Montanaro L. Turning uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules. 2018;8:38.

  • Bergeron D, Fafard-Couture E, Scott MS. Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action. Biochem Soc Trans. 2020;48:645–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falaleeva M, Welden JR, Duncan MJ, Stamm S. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: old dogs show new tricks. Bioessays. 2017;39:10.

  • Bratkovic T, Bozic J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48:1627–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Poplawski SG, Peixoto L, Porcari GS, Wimmer ME, McNally AG, Mizuno K, et al. Contextual fear conditioning induces differential alternative splicing. Neurobiol Learn Mem. 2016;134:221–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leighton LJ, Ke K, Zajaczkowski EL, Edmunds J, Spitale RC, Bredy TW. Experience-dependent neural plasticity, learning, and memory in the era of epitranscriptomics. Genes Brain Behav. 2018;17:e12426.

    CAS 
    PubMed 

    Google Scholar
     

  • Rogelj B, Hartmann CE, Yeo CH, Hunt SP, Giese KP. Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur J Neurosci. 2003;18:3089–96.

    PubMed 

    Google Scholar
     

  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370–5.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Granno S, Nixon-Abell J, Berwick DC, Tosh J, Heaton G, Almudimeegh S, et al. Downregulated Wnt/beta-catenin signalling in the Down syndrome hippocampus. Sci Rep. 2019;9:7322.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ito H, Morishita R, Mizuno M, Kawamura N, Tabata H, Nagata KI. Biochemical and morphological characterization of a neurodevelopmental disorder-related mono-ADP-ribosylhydrolase, MACRO domain containing 2. Dev Neurosci. 2018;40:278–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Bromer C, Bartol TM, Bowden JB, Hubbard DD, Hanka DC, Gonzalez PV, et al. Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc Natl Acad Sci USA. 2018;115:E2410–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci. 2004;24:8153–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ishikawa R, Fukushima H, Frankland PW, Kida S. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. Elife. 2016;5:e17464.

  • Yang CH, Di Antonio A, Kirschen GW, Varma P, Hsieh J, Ge S. Circuit integration initiation of new hippocampal neurons in the adult brain. Cell Rep. 2020;30:959–68.e953.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Huan L, Guo T, Wu Y, Liu Y, Wang Q, et al. LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1alpha. Oncogene. 2020;39:7005–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roper RJ, Goodlett CR, Martinez de Lagran M, Dierssen M. Behavioral phenotyping for down syndrome in mice. Curr Protoc Mouse Biol. 2020;10:e79.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martelotto LG. ‘Frankenstein’ protocol for nuclei isolation from fresh and frozen tissue for snRNAseq. 2020.

  • Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang M, Kaymaz Y, Logeman BL, Eichhorn S, Liang ZS, Dulac C, et al. Evaluating single-cell cluster stability using the Jaccard similarity index. Bioinformatics. 2021;37:2212–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Lin Y, Ormerod JT, Yang P, Yang JYH, Lo KK. scDC: single cell differential composition analysis. BMC Bioinform. 2019;20:721.

    CAS 

    Google Scholar
     

  • Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, et al. Single-cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun. 2018;9:3894.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jaszczyk A, Stankiewicz AM, Juszczak GR. Dissection of mouse hippocampus with its dorsal, intermediate and ventral subdivisions combined with molecular validation. Brain Sci. 2022;12:799.

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cozzuto L, Liu H, Pryszcz LP, Pulido TH, Delgado-Tejedor A, Ponomarenko J, et al. MasterOfPores: a workflow for the analysis of Oxford nanopore direct RNA sequencing datasets. Front Genet. 2020;11:211.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith MA, Ersavas T, Ferguson JM, Liu H, Lucas MC, Begik O, et al. Molecular barcoding of native RNAs using nanopore sequencing and deep learning. Genome Res. 2020;30:1345–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sovic I, Sikic M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat Commun. 2016;7:11307.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, et al. Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat Commun. 2019;10:4079.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sierra C, De Toma I, Cascio LL, Vegas E, Dierssen M. Social factors influence behavior in the novel object recognition task in a mouse model of Down syndrome. Front Behav Neurosci. 2021;15:772734.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994;61:59–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Pons-Espinal M, Martinez de Lagran M, Dierssen M. Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiol Dis. 2013;60:18–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Wojtowicz JM, Kee N. BrdU assay for neurogenesis in rodents. Nat Protoc. 2006;1:1399–405.

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles