Tuesday, June 6, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome – Scientific Reports


  • Bozdag, G. et al. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 31(12), 2841–2855 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81(1), 19–25 (2004).

    Article 

    Google Scholar
     

  • Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19(1), 41–47 (2004).

    Article 

    Google Scholar
     

  • Glueck, C. J. & Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 92, 108–120 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudecova, M. et al. Diabetes and impaired glucose tolerance in patients with polycystic ovary syndrome–a long term follow-up. Hum. Reprod. 26(6), 1462–1468 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celik, C. et al. Progression to impaired glucose tolerance or type 2 diabetes mellitus in polycystic ovary syndrome: A controlled follow-up study. Fertil. Steril. 101(4), 1123–8.e1 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakoly, N. S. et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: A systematic review and meta-regression. Hum. Reprod. Update 24(4), 455–467 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ollila, M. M. et al. Overweight and obese but not normal weight women with PCOS are at increased risk of Type 2 diabetes mellitus-a prospective, population-based cohort study. Hum. Reprod. 32(2), 423–431 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wekker, V. et al. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. Hum. Reprod. Update 26(6), 942–960 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, X. et al. The mental health of women with polycystic ovary syndrome: A systematic review and meta-analysis. Arch. Womens Ment. Health 24(1), 11–27 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmadi, M. et al. Mental and personality disorders in infertile women with polycystic ovary: A case-control study. Afr. Health Sci. 20(3), 1241–1249 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhari, A. P., Mazumdar, K. & Mehta, P. D. Anxiety, depression, and quality of life in women with polycystic ovarian syndrome. Indian J. Psychol. Med. 40(3), 239–246 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brutocao, C. et al. Psychiatric disorders in women with polycystic ovary syndrome: A systematic review and meta-analysis. Endocrine 62(2), 318–325 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damone, A. L. et al. Depression, anxiety and perceived stress in women with and without PCOS: A community-based study. Psychol. Med. 49(9), 1510–1520 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Karjula, S. et al. Psychological distress is more prevalent in fertile age and premenopausal women With PCOS symptoms: 15-year follow-up. J. Clin. Endocrinol. Metab. 102(6), 1861–1869 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baskind, N. E. & Balen, A. H. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 37, 80–97 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Walters, K. A. et al. New perspectives on the pathogenesis of PCOS: Neuroendocrine origins. Trends Endocrinol. Metab. 29(12), 841–852 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witchel, S. F. & Tena-Sempere, M. The Kiss1 system and polycystic ovary syndrome: Lessons from physiology and putative pathophysiologic implications. Fertil. Steril. 100(1), 12–22 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumesic, D. A. et al. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 36(5), 487–525 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutinho, E. A. & Kauffman, A. S. The role of the brain in the pathogenesis and physiology of polycystic ovary syndrome (PCOS). Med. Sci. 7(8), 84 (2019).

    CAS 

    Google Scholar
     

  • Hague, W. M. et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin. Endocrinol. 33(4), 501–510 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 236, 116940 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shorakae, S. et al. The emerging role of chronic low-grade inflammation in the pathophysiology of polycystic ovary syndrome. Semin. Reprod. Med. 33(4), 257–269 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shorakae, S. et al. Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clin. Endocrinol. 89(5), 628–633 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dag, Z. O. et al. Autonomic dysfunction in patients with polycystic ovary syndrome. Taiwan J. Obstet. Gynecol. 54(4), 381–384 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Velusami, D. & Sivasubramanian, S. Sympathovagal imbalance and neurophysiologic cognitive assessment using evoked potentials in polycystic ovary syndrome in young adolescents—a cross-sectional study. J. Basic Clin. Physiol. Pharmacol. 30(2), 233–237 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Li, W., Chen, Y. & Xu, L. Association of sympathetic nervous system activity with polycystic ovarian syndrome. Clin. Exp. Obstet. Gynecol. 41(5), 499–506 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saranya, K. et al. Assessment of cardiovascular autonomic function in patients with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 40(1), 192–199 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gibbons, C. H. Basics of autonomic nervous system function. Handb. Clin. Neurol. 160, 407–418 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Butt, M. F. et al. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236(4), 588–611 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ondicova, K. & Mravec, B. Multilevel interactions between the sympathetic and parasympathetic nervous systems: A minireview. Endocr. Regul. 44(2), 69–75 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer, A. D., Albu-Soda, A. & Aziz, Q. Vagus nerve stimulation in clinical practice. Br. J. Hosp. Med. 77(11), 645–651 (2016).

    Article 

    Google Scholar
     

  • Mónica Brauer, M. & Smith, P. G. Estrogen and female reproductive tract innervation: Cellular and molecular mechanisms of autonomic neuroplasticity. Auton. Neurosci. 187, 1–17 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gerendai, I. et al. Recent findings on the organization of central nervous system structures involved in the innervation of endocrine glands and other organs; observations obtained by the transneuronal viral double-labeling technique. Endocrine 36(2), 179–188 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lara, H. E. et al. Activation of ovarian sympathetic nerves in polycystic ovary syndrome. Endocrinology 133(6), 2690–2695 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barria, A. et al. Ovarian steroidal response to gonadotropins and beta-adrenergic stimulation is enhanced in polycystic ovary syndrome: Role of sympathetic innervation. Endocrinology 133(6), 2696–2703 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lara, H. E. et al. An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat. Endocrinology 141(3), 1059–1072 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manni, L. et al. Ovarian expression of alpha (1)-and beta (2)-adrenoceptors and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries. Auton. Neurosci. 118(1–2), 79–87 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dissen, G. A. et al. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. Endocrinology 150(6), 2906–2914 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figueroa, F. et al. Sympathetic innervation regulates macrophage activity in rats with polycystic ovary. J. Endocrinol. 238(1), 33–45 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashim, Z. H., Hamdan, F. B. & Al-Salihi, A. R. Autonomic dysfunction in women with polycystic ovary syndrome. Iran J. Reprod. Med. 13(1), 27–34 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shorakae, S. et al. High-molecular-weight adiponectin is inversely associated with sympathetic activity in polycystic ovary syndrome. Fertil. Steril. 109(3), 532–539 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sverrisdóttir, Y. B. et al. Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth?. Am. J. Physiol. Endocrinol. Metab. 294(3), E576–E581 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lansdown, A. & Rees, D. A. The sympathetic nervous system in polycystic ovary syndrome: A novel therapeutic target?. Clin. Endocrinol. 77(6), 791–801 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lanska, D. J. J. L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 58(3), 452–459 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci. Biobehav. Rev. 127, 37–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, R. L. & Wilson, C. G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giordano, F. et al. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia 58(Suppl 1), 85–90 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Yu. et al. Transcutaneous auricular vagus nerve stimulation: From concept to application. Neurosci. Bull. 37(6), 853–862 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgmann, D. et al. Technical note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation. Neuroimage 244, 118566 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, P. M. et al. Brain neuromodulation techniques: A review. Neuroscientist 22(4), 406–421 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaniusas, E. et al. Current directions in the auricular vagus nerve stimulation II—an engineering perspective. Front. Neurosci. 13, 772 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, W. C. et al. The potential role of vagus-nerve stimulation in the treatment of HIV- associated depression: A review of literature. Neuropsychiatr. Dis. Treat. 13, 1677–1689 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Menachem, E. et al. Surgically implanted and non-invasive vagus nerve stimulation: A review of efficacy, safety and tolerability. Eur. J. Neurol. 22(9), 1260–1268 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carandina, A. et al. Effects of transcutaneous auricular vagus nerve stimulation on cardiovascular autonomic control in health and disease. Auton. Neurosci. 236, 102893 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snider, A. P. & Wood, J. R. Obesity induces ovarian inflammation and reduces oocyte quality. Reproduction 158(3), R79–R90 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, P. & Xie, Y. Treatment strategies for women with polycystic ovary syndrome. Gynecol. Endocrinol. 34(4), 272–277 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • de Lartigue, G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594(20), 5791–5815 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodenlos, J. S. et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite 48(2), 145–153 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Burneo, J. G. et al. Weight loss associated with vagus nerve stimulation. Neurology 59(3), 463–464 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardo, J. V. et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: An observation. Int. J. Obes. 31(11), 1756–1759 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bugajski, A. J. et al. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J. Physiol. Pharmacol. 58(Suppl 1), 5–12 (2007).

    PubMed 

    Google Scholar
     

  • Gil, K. et al. Physiological and morphological effects of long-term vagal stimulation in diet induced obesity in rats. J. Physiol. Pharmacol. 60(Suppl 3), 61–66 (2009).

    PubMed 

    Google Scholar
     

  • Gil, K., Bugajski, A. & Thor, P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Gil, K. et al. Chronic vagus nerve stimulation reduces body fat, blood cholesterol and triglyceride levels in rats fed a high-fat diet. Folia Med. Cracov. 52(3–4), 79–96 (2012).

    PubMed 

    Google Scholar
     

  • Dai, F., Yin, J. & Chen, J. D. Z. Effects and mechanisms of vagal nerve stimulation on body weight in diet-induced obese rats. Obes. Surg. 30(3), 948–956 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8(12), 743–754 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelot, N. A. & Grill, W. M. Effects of vagal neuromodulation on feeding behavior. Brain Res. 1693(Pt B), 180–187 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Effects and mechanisms of auricular vagus nerve stimulation on high-fat-diet-induced obese rats. Nutrition 32(1), 156 (2016).

    MathSciNet 

    Google Scholar
     

  • Wang, S. et al. Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats. PLoS ONE 10(4), e0124195 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Transcutaneous auricular vagal nerve stimulation inhibits limbic-regional P2X7R expression and reverses depressive-like behaviors in Zucker diabetic fatty rats. Neurosci. Lett. 775, 136562 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Transcutaneous auricular vagal nerve stimulation inhibits hypothalamic P2Y1R expression and attenuates weight gain without decreasing food intake in Zucker diabetic fatty rats. Sci. Prog. 104(2), 368504211009669 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burnstock, G. & Gentile, D. The involvement of purinergic signalling in obesity. Purinergic Signal 14(2), 97–108 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obst, M. A. et al. Five weeks of intermittent transcutaneous vagus nerve stimulation shape neural networks: A machine learning approach. Brain Imaging Behav. 16(3), 1217–1233 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bannigida, D. M., Nayak, B. S. & Vijayaraghavan, R. Insulin resistance and oxidative marker in women with PCOS. Arch. Physiol. Biochem. 126(2), 183–186 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garg, D. & Tal, R. Inositol treatment and ART outcomes in women with PCOS. Int. J. Endocrinol. 2016, 1979654 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sørensen, A. E. et al. MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem. Biol. Interact. 259(Pt A), 8–16 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Persson, S. et al. Higher risk of type 2 diabetes in women with hyperandrogenic polycystic ovary syndrome. Fertil. Steril. 116(3), 862–871 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duleba, A. J. & Dokras, A. Is PCOS an inflammatory process?. Fertil. Steril. 97(1), 7–12 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pani, A. et al. From prediabetes to type 2 diabetes mellitus in women with polycystic ovary syndrome: Lifestyle and pharmacological management. Int. J. Endocrinol. 2020, 6276187 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahadur, A. et al. Comparison of clinical, metabolic and hormonal effects of metformin versus combined therapy of metformin with myoinositol plus D-chiro-inositol in women with polycystic ovary syndrome (PCOS): A randomized controlled trial. Cureus 13(6), e15510 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15(10), 625–636 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Teff, K. L. Visceral nerves: Vagal and sympathetic innervation. JPEN J. Parenter. Enteral. Nutr. 32(5), 569–571 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lundqvist Martin, H. et al. Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes. Diabetologia 64(3), 641–655 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poon, A. K. et al. Insulin resistance and reduced cardiac autonomic function in older adults: The Atherosclerosis Risk in Communities study. BMC Cardiovasc. Disord. 20(1), 217 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isao, S. et al. Low heart rate variability and sympathetic dominance modifies the association between insulin resistance and metabolic syndrome—The toon health study. Circ. J. 81(10), 1447–1453 (2017).

    Article 

    Google Scholar
     

  • Chen Daniel, L. T. et al. Muscle sympathetic nerve activity is associated with liver insulin sensitivity in obese non-diabetic men. Front. Physiol. 8, 101 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Licht, C. M. et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. J. Clin. Endocrinol. Metab. 95(5), 2458–2466 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carnethon, M. R. et al. Prospective investigation of autonomic nervous system function and the development of type 2 diabetes: The Atherosclerosis Risk In Communities study, 1987–1998. Circulation 107(17), 2190–2195 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Titikorn, C. et al. Vagus nerve stimulation exerts the neuroprotective effects in obese-insulin resistant rats, leading to the improvement of cognitive function. Sci. Rep. 6, 26866 (2016).

    Article 

    Google Scholar
     

  • Charles-Henri, M. et al. Obesity-associated alterations in glucose metabolism are reversed by chronic ilbateral stimulation of the abdominal vagus nerve. Diabetes 66(4), 848–857 (2017).

    Article 

    Google Scholar
     

  • Huang, F. et al. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: A pilot randomized study. BMC Complement Altern. Med. 14, 203 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Payne, S. C. et al. Blood glucose modulation and safety of efferent vagus nerve stimulation in a type 2 diabetic rat model. Physiol. Rep. 10(8), e15257 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyers, E. E. et al. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Physiol. Rep. 4(4), e12718 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jielin, D. et al. Activation of α7nAChR via vagus nerve prevents obesity-induced insulin resistance via suppressing endoplasmic reticulum stress-induced inflammation in Kupffer cells. Med. Hypotheses. 140, 109671 (2020).

    Article 

    Google Scholar
     

  • Li, S. et al. Therapeutic effect of vagus nerve stimulation on depressive-like behavior, hyperglycemia and insulin receptor expression in Zucker fatty rats. PLoS ONE 9(11), e112066 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, J. et al. Vagal nerve stimulation for glycemic control in a rodent model of type 2 diabetes. Obes. Surg. 29(9), 2869–2877 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kelly, C. C. et al. Low grade chronic inflammation in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 86(6), 2453–2455 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudnicka, E. et al. Chronic low grade inflammation in pathogenesis of PCOS. Int. J. Mol. Sci. 22(7), 3789 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González, F. Nutrient-induced inflammation in polycystic ovary syndrome: Role in the development of metabolic aberration and ovarian dysfunction. Semin. Reprod. Med. 33(4), 276–286 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tersigni, C. et al. Abnormal uterine inflammation in obstetric syndromes: Molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3. Mol. Hum. Reprod. 26(2), 111–121 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Maier, S. F. et al. The role of the vagus nerve in cytokine-to-brain communication. Ann. N. Y. Acad. Sci. 840, 289–300 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonaz, B., Sinniger, V. & Pellissier, S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J. Physiol. 594(20), 5781–5790 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salama, M., Akan, A. & Mueller, M. R. Transcutaneous stimulation of auricular branch of the vagus nerve attenuates the acute inflammatory response after lung lobectomy. World J. Surg. 44(9), 3167–3174 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, G. S. et al. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol. Motil. 31(3), e13501 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Y. X. et al. Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid. Based Complement Alternat. Med. 2012, 627023 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X. et al. Exploration of the relationship between gut microbiota and polycystic ovary syndrome (PCOS): A review. Geburtshilfe Frauenheilkd 80(2), 161–171 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insenser, M. et al. Gut microbiota and the polycystic ovary syndrome: Influence of sex, sex hormones, and obesity. J. Clin. Endocrinol. Metab. 103(7), 2552–2562 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lindheim, L. et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PLoS ONE 12(1), e0168390 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D., Zhang, L. & Yue, F. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur. J. Endocrinol. 172(1), 29–36 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y. et al. Gut microbiota dysbiosis in polycystic ovary syndrome: Association with obesity—a preliminary report. Can. J. Physiol. Pharmacol. 98(11), 803–809 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L. et al. Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome. Front. Endocrinol. 11, 628 (2020).

    Article 

    Google Scholar
     

  • Torres, P. J. et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with Hyperandrogenism. J. Clin. Endocrinol. Metab. 103(4), 1502–1511 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaz, B., Bazin, T. & Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 12, 49 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grewal, S. & Gupta, V. Effect of obesity on autonomic nervous system. Int. J. Curr. Bio Med. Sci. 1(1), 15–18 (2011).


    Google Scholar
     

  • Eisenstein, M. Microbiome: Bacterial broadband. Nature 533(7603), S104–S106 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tse, J. K. Y. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci. 8(7), 1438–1447 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willman, J. et al. Gut microbiome and neurosurgery: Implications for treatment. Clin. Transl. Discov. 2(4), e139 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakob, M. O., Murugan, S. & Klose, C. S. N. Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Front. Immunol. 11, 308 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haney, M. M., Ericsson, A. C. & Lever, T. E. Effects of intraoperative vagal nerve stimulation on the gastrointestinal microbiome in a mouse model of amyotrophic lateral sclerosis. Comp. Med. 68(6), 452–460 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aziz, M. et al. Polycystic ovary syndrome: Cardiovascular risk factors according to specific phenotypes. Acta Obstet. Gynecol. Scand. 94(10), 1082–1089 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudecova, M. et al. Endothelial function in patients with polycystic ovary syndrome: A long-term follow-up study. Fertil. Steril. 94(7), 2654–2658 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, J. et al. Cardiovascular disease and risk factors in PCOS women of postmenopausal age: A 21-year controlled follow-up study. J. Clin. Endocrinol. Metab. 96(12), 3794–3803 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mani, H. et al. Diabetes and cardiovascular events in women with polycystic ovary syndrome: A 20-year retrospective cohort study. Clin. Endocrinol. 78(6), 926–934 (2013).

    Article 

    Google Scholar
     

  • Papadakis, G. et al. Is cardiovascular risk in women with PCOS a real risk? Current insights. Minerva Endocrinol. 42(4), 340–355 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Christakou, C. & Diamanti-Kandarakis, E. Structural, biochemical and non-traditional cardiovascular risk markers in PCOS. Curr. Pharm. Des. 19(32), 5764–5774 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wild, R. A. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: A consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95(5), 2038–2049 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadaya, J. & Ardell, J. L. Autonomic modulation for cardiovascular disease. Front Physiol. 11, 617459 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grassi, G., Seravalle, G. & Mancia, G. Sympathetic activation in cardiovascular disease: Evidence, clinical impact and therapeutic implications. Eur. J. Clin. Invest. 45(12), 1367–1375 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Thayer, J. F., Yamamoto, S. S. & Brosschot, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141(2), 122–131 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sclocco, R., Garcia, R. G., Gabriel, A. et al. Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) effects on autonomic outflow in hypertension. InAnnual International Conference of the IEEE Engineering in Medicine and Biology Society 3130–3133 (2017).

  • Tran, N. et al. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Transl. Res. 12(3), 221–230 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Stavrakis, S. et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65(9), 867–875 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavrakis, S. et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): A randomized clinical trial. JACC Clin. Electrophysiol. 6(3), 282–291 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almis, H. et al. Self-concept, depression, and anxiety levels of adolescents with polycystic ovary syndrome. J. Pediatr. Adolesc. Gynecol. 34(3), 311–316 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Harnod, T. et al. Association between depression risk and polycystic ovarian syndrome in young women: A retrospective nationwide population-based cohort study (1998–2013). Hum. Reprod. 34(9), 1830–1837 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alur-Gupta, S. et al. Body-image distress is increased in women with polycystic ovary syndrome and mediates depression and anxiety. Fertil. Steril. 112(5), 930-938.e1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooney, L. G. et al. High prevalence of moderate and severe depressive and anxiety symptoms in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 32(5), 1075–1091 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ethirajulu, A. et al. Insulin resistance, hyperandrogenism, and its associated symptoms are the precipitating factors for depression in women with polycystic ovarian syndrome. Cureus 13(9), e18013 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolhe, J. V. et al. PCOS and depression: Common links and potential targets. Reprod. Sci. https://doi.org/10.1007/s43032-021-00765-2 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Teede, H. J. et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 110(3), 364–379 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, M. S. et al. A one-year comparison of vagus nerve stimulation with treatment as usualfor treatment-resistant depression. Biol. Psychiatry 58(5), 364–373 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rush, A. J. et al. Vagus nerve stimulation for treatment-resistant depression: A randomized, controlled acute phase trial. Biol. Psychiatry 58(5), 347–354 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rush, A. J. et al. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: A naturalistic study. Biol. Psychiatry 58(5), 355–363 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Akhtar, H. et al. Therapeutic efficacy of neurostimulation for depression: Techniques, current modalities, and future challenges. Neurosci. Bull. 32(1), 115–126 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, S. H. et al. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 3. Pharmacol. Treat. Can. J. Psychiatry 61(9), 540–560 (2016).

    Article 

    Google Scholar
     

  • Toffa, D. H. et al. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure 83, 104–123 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Transcutaneous auricular vagus nerve stimulation triggers melatonin secretion and is antidepressive in Zucker diabetic fatty rats. PLoS ONE 9(10), e111100 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. Transcutaneous auricular vagus nerve stimulation at 20 Hz improves depression-like behaviors and down-regulates the hyperactivity of HPA axis in chronic unpredictable mild stress model rats. Front. Neurosci. 14, 680 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. Effects of transcutaneous auricular vagus nerve stimulation on peripheral and central tumor necrosis factor alpha in rats with depression-chronic somatic pain comorbidity. Neural Plast. 2020, 8885729 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: A systematic review and meta-analysis. Medicine 97(52), e13845 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, J. et al. Treating depression with transcutaneous auricular vagus nerve stimulation: State of the art and future perspectives. Front. Psychiatry 9, 20 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: