Tuesday, June 6, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment – Nature Communications


  • Fidler, I. J. The role of the organ microenvironment in brain metastasis. Semin. Cancer Biol. 21, 107–112 (2011).

    PubMed 

    Google Scholar
     

  • Steeg, P. S., Camphausen, K. A. & Smith, Q. R. Brain metastases as preventive and therapeutic targets. Nat. Rev. Cancer 11, 352–363 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langley, R. R. & Fidler, I. J. The biology of brain metastasis. Clin. Chem. 59, 180–189 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Achrol, A. S. et al. Brain metastases. Nat. Rev. Dis. Prim. 5, 5 (2019).

    PubMed 

    Google Scholar
     

  • Boire, A., Brastianos, P. K., Garzia, L. & Valiente, M. Brain metastasis. Nat. Rev. Cancer 20, 4–11 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Langley, R. R. & Fidler, I. J. The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 128, 2527–2535 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    PubMed 

    Google Scholar
     

  • Molofsky, A. V. et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891–907 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, F. et al. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res. 76, 4970–4980 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shumakovich, M. A. et al. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. FASEB J. 31, 5049–5067 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jandial, R., Choy, C., Levy, D. M., Chen, M. Y. & Ansari, K. I. Astrocyte-induced Reelin expression drives proliferation of Her2(+) breast cancer metastases. Clin. Exp. Metastasis 34, 185–196 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. J. et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13, 286–298 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, A. et al. Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J. Pathol. 236, 116–127 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Y. et al. Polyunsaturated fatty acids from astrocytes activate PPARγ signaling in cancer cells to promote brain metastasis. Cancer Discov. 9, 1720–1735 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stromnes, I. M., Greenberg, P. D. & Hingorani, S. R. Molecular pathways: myeloid complicity in cancer. Clin. Cancer Res. 20, 5157–5170 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kwak, T. et al. Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer. Cell Rep. 33, 108571 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballabh, P., Braun, A. & Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehrer, E. J. et al. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: an international meta-analysis of individual patient data. Radiother. Oncol. 130, 104–112 (2019).

    PubMed 

    Google Scholar
     

  • Amin, S., Baine, M. J., Meza, J. L. & Lin, C. Association of immunotherapy with survival among patients with brain metastases whose cancer was managed with definitive surgery of the primary tumor. JAMA Netw. Open 3, e2015444 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J. J. et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin. Cancer Res. 16, 4892–4898 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amaral, T. et al. Combined immunotherapy with nivolumab and ipilimumab with and without local therapy in patients with melanoma brain metastasis: a DeCOG* study in 380 patients. J. Immunother. Cancer 8, e000333 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, M. B. et al. High-dose interleukin-2 (HD IL-2) therapy should be considered for treatment of patients with melanoma brain metastases. Chemother. Res. Pract. 2013, 726925 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, D. X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kantzer, C. G. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 65, 990–1004 (2017).

    PubMed 

    Google Scholar
     

  • Blank, T. & Prinz, M. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia 65, 1397–1406 (2017).

    PubMed 

    Google Scholar
     

  • Deczkowska, A., Baruch, K. & Schwartz, M. Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol. 37, 181–192 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Prinz, M. & Knobeloch, K. P. Type I interferons as ambiguous modulators of chronic inflammation in the central nervous system. Front. Immunol. 3, 67 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arico, E., Castiello, L., Capone, I., Gabriele, L. & Belardelli, F. Type I interferons and cancer: an evolving story demanding novel clinical applications. Cancers 11, 1943 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gresser, I. & Bourali, C. Exogenous interferon and inducers of interferon in the treatment Balb-c mice inoculated with RC19 tumour cells. Nature 223, 844–845 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • Budhwani, M., Mazzieri, R. & Dolcetti, R. Plasticity of type I interferon-mediated responses in cancer therapy: from anti-tumor immunity to resistance. Front. Oncol. 8, 322 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musella, M., Manic, G., De Maria, R., Vitale, I. & Sistigu, A. Type-I-interferons in infection and cancer: unanticipated dynamics with therapeutic implications. Oncoimmunology 6, e1314424 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snell, L. M., McGaha, T. L. & Brooks, D. G. Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542–557 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Priego, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 24, 1024–1035 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643.e7–1660.e7 (2020).


    Google Scholar
     

  • Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 10, 2759 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laoui, D. et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Commun. 7, 13720 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verneau, J., Sautes-Fridman, C. & Sun, C. M. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin. Immunol. 48, 101410 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Vareslija, D. et al. Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets. J. Natl Cancer Inst. 111, 388–398 (2019).

    PubMed 

    Google Scholar
     

  • Iwamoto, T. et al. Distinct gene expression profiles between primary breast cancers and brain metastases from pair-matched samples. Sci. Rep. 9, 13343 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27, 177–192 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, G. M. et al. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov. 9, 628–645 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, H. et al. Cellular architecture of human brain metastases. Cell 185, 729.e20–745.e20 (2022).


    Google Scholar
     

  • Smalley, I. et al. Single-cell characterization of the immune microenvironment of melanoma brain and leptomeningeal metastases. Clin. Cancer Res. 27, 4109–4125 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, K. E. et al. Improvement in hepatic fibrosis biomarkers associated with chemokine receptor inactivation through mutation or therapeutic blockade. Clin. Infect. Dis. 68, 1911–1918 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, M. et al. A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS 30, 869–878 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kagan, R. M. et al. Comparison of genotypic and phenotypic HIV type 1 tropism assay: results from the screening samples of Cenicriviroc Study 202, a randomized phase II trial in treatment-naive subjects. AIDS Res. Hum. Retroviruses 30, 151–159 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bot, I. et al. A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy. Sci. Rep. 7, 52 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilums, M. et al. When structure-affinity relationships meet structure-kinetics relationships: 3-((Inden-1-yl)amino)−1-isopropyl-cyclopentane-1-carboxamides as CCR2 antagonists. Eur. J. Med. Chem. 93, 121–134 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini, S. et al. Type I interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS. Cell Rep. 31, 107666 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Gril, B. et al. Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat. Commun. 9, 2705 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrillo-de Sauvage, M. A. et al. CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS ONE 7, e30762 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, R. Y. et al. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274, 53–61 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glabinski, A. R. et al. Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J. Immunol. 156, 4363–4368 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Howe, C. L., LaFrance-Corey, R. G., Goddery, E. N., Johnson, R. K. & Mirchia, K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J. Neuroinflammation 14, 238 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balabanov, R. et al. Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J. Neurosci. 27, 2013–2024 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Errede, M. et al. Microglia-derived CCL2 has a prime role in neocortex neuroinflammation. Fluids Barriers CNS 19, 68 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kudo, Y. et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann. Oncol. 30, 1521–1530 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci. Transl. Med. 12, eaaz5387 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, A. M. L. et al. Aging and CNS myeloid cell depletion attenuate breast cancer brain metastasis. Clin. Cancer Res. 27, 4422–4434 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taggart, D. et al. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8(+) T cell trafficking. Proc. Natl Acad. Sci. USA 115, E1540–E1549 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guldner, I. H. et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through Cxcl10. Cell 183, 1234.e5–1248.e5 (2020).


    Google Scholar
     

  • Wu, S. Y. et al. Nicotine promotes brain metastasis by polarizing microglia and suppressing innate immune function. J. Exp. Med. 217, e20191131 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benbenishty, A. et al. Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation. PLoS Biol. 17, e2006859 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregorian, C. et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J. Neurosci. 29, 1874–1886 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolson, G. L., Brunson, K. W. & Fidler, I. J. Specificity of arrest, survival, and growth of selected metastatic variant cell lines. Cancer Res. 38, 4105–4111 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Schildge, S., Bohrer, C., Beck, K. & Schachtrup, C. Isolation and culture of mouse cortical astrocytes. J. Vis. Exp. 19, 50079 (2013).


    Google Scholar
     

  • Holt, L. M. & Olsen, M. L. Novel applications of magnetic cell sorting to analyze cell-type specific gene and protein expression in the central nervous system. PLoS ONE 11, e0150290 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swartzlander, D. B. et al. Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer’s disease. JCI Insight 3, e121109 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricard, C., Stanchi, F., Rougon, G. & Debarbieux, F. An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two-photon microscopy. J. Vis. Exp. 21, 51108 (2014).


    Google Scholar
     

  • Ricard, C. et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci. Rep. 6, 26381 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883.e5–1900.e5 (2021).


    Google Scholar
     

  • Liu, X. et al. Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat. Commun. 13, 1158 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971.e5–986.e5 (2018).


    Google Scholar
     

  • Morgan, D. & Tergaonkar, V. Unraveling B cell trajectories at single cell resolution. Trends Immunol. 43, 210–229 (2022).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: