Tuesday, October 3, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Ufmylation on UFBP1 alleviates non-alcoholic fatty liver disease by modulating hepatic endoplasmic reticulum stress – Cell Death & Disease


  • Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Fan JG. Diagnosis and management of non-alcoholic fatty liver disease and related metabolic disorders: consensus statement from the Study Group of Liver and Metabolism, Chinese Society of Endocrinology. J Diabetes. 2013;5:406–15.

    Article 
    PubMed 

    Google Scholar
     

  • Lin H, Zhang X, Li G, Wong GL, Wong VW. Epidemiology and clinical outcomes of metabolic (Dysfunction)-associated fatty liver disease. J Clin Transl Hepatol. 2021;9:972–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69:927–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang CL, Liang L, Fu JF, Zou CC, Hong F, Xue JZ, et al. Effect of lifestyle intervention on non-alcoholic fatty liver disease in Chinese obese children. World J Gastroenterol. 2008;14:1598–602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig. 2005;115:1343–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24:2974–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20:1746–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrell GC, van Rooyen D. Liver cholesterol: is it playing possum in NASH. Am J Physiol Gastrointest Liver Physiol. 2012;303:G9–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flores YN, Amoon AT, Su B, Velazquez-Cruz R, Ramírez-Palacios P, Salmerón J, et al. Serum lipids are associated with nonalcoholic fatty liver disease: a pilot case-control study in Mexico. Lipids Health Dis. 2021;20:136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen MC, Shulman GI. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharm Sci. 2017;38:649–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 2011;108:16381–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol. 2022;22:429–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baiceanu A, Mesdom P, Lagouge M, Foufelle F. Endoplasmic reticulum proteostasis in hepatic steatosis. Nat Rev Endocrinol. 2016;12:710–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, et al. Endoplasmic reticulum stress in liver diseases. Hepatology. 2023;77:619–39.

    Article 
    PubMed 

    Google Scholar
     

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320:1492–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebeaupin C, Vallée D, Rousseau D, Patouraux S, Bonnafous S, Adam G, et al. Bax inhibitor-1 protects from nonalcoholic steatohepatitis by limiting inositol-requiring enzyme 1 alpha signaling in mice. Hepatology. 2018;68:515–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev. 2011;91:1219–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim JY, Garcia-Carbonell R, Yamachika S, Zhao P, Dhar D, Loomba R, et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell. 2018;175:e15.

    Article 

    Google Scholar
     

  • Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science. 2012;338:818–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao G, Zhang T, Yu S, Lee S, Calabuig-Navarro V, Yamauchi J, et al. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J Biol Chem. 2013;288:25350–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemaire K, Moura RF, Granvik M, Igoillo-Esteve M, Hohmeier HE, Hendrickx N, et al. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One. 2011;6:e18517.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, Okazaki N, et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 2004;23:1977–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang SH, Kim GR, Seong M, Baek SH, Seol JH, Bang OS, et al. Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J Biol Chem. 2007;282:5256–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Y, Xu X. UFMylation: a unique & fashionable modification for life. Genom Proteom Bioinform. 2016;14:140–6.

    Article 
    CAS 

    Google Scholar
     

  • Ishimura R, Obata M, Kageyama S, Daniel J, Tanaka K, Komatsu M. A novel approach to assess the ubiquitin-fold modifier 1-system in cells. FEBS Lett. 2017;591:196–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina SK, et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 2019;10:1084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhang M, Wu J, Lei G, Li H. Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS One. 2012;7:e48587.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell. 2020;180:1160–77.e20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balce DR, Wang YT, McAllaster MR, Dunlap BF, Orvedahl A, Hykes BLJr, et al. UFMylation inhibits the proinflammatory capacity of interferon-γ-activated macrophages. Proc Natl Acad Sci USA. 2021;118:e2011763118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yue G, Ma W, Zhang A, Zou J, Cai Y, et al. Ufm1-specific ligase Ufl1 regulates endoplasmic reticulum homeostasis and protects against heart failure. Circ Heart Fail. 2018;11:e004917.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, Ma X, Jing Y, Zhang G, Zhang D, Mao Z, et al. P4HB UFMylation regulates mitochondrial function and oxidative stress. Free Radic Biol Med. 2022;188:277–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, et al. Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genom. 2021;48:403–10.

    Article 
    CAS 

    Google Scholar
     

  • Lee YJ, Johnson KR, Hallenbeck JM. Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS One. 2012;7:e47787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai Y, Pi W, Sivaprakasam S, Zhu X, Zhang M, Chen J, et al. UFBP1, a key component of the Ufm1 conjugation system, is essential for ufmylation-mediated regulation of erythroid development. PLoS Genet. 2015;11:e1005643.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen F, Xing C, Zhang W, Li J, Hu T, Li L, et al. Salubrinal, a novel inhibitor of eIF-2α dephosphorylation, promotes erythropoiesis at early stage targeted by ufmylation pathway. J Cell Physiol. 2019;234:18560–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Zhang H, Song Y, Zhuang L, Yang Q, Pan M, et al. Ubiquitin fold modifier 1 activates NF-κB pathway by down-regulating LZAP expression in the macrophage of diabetic mouse model. Biosci Rep. 2020;40:BSR20191672.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang Q, Xiong J, Hu XL, He JP, Liu HF, Zhang GY, et al. UFM1 protects macrophages from oxLDL-induced foam cell formation through a liver X receptor α dependent pathway. J Atheroscler Thromb. 2015;22:1124–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, et al. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol. 2020;22:1056–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin JX, Xie XS, Weng XF, Qiu SL, Yoon C, Lian NZ, et al. UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expres7sion of PDK1 through PI3K/AKT signaling. J Exp Clin Cancer Res. 2019;38:410.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, et al. Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development. Mol Cell. 2014;56:261–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, et al. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun. 2022;13:7857.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Z, Wang X, Li D, Cao L, Cui H, Xu G. UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2. Oncogene. 2021;40:647–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin JX, Xie XS, Weng XF, Zheng CH, Xie JW, Wang JB, et al. Low expression of CDK5RAP3 and DDRGK1 indicates a poor prognosis in patients with gastric cancer. World J Gastroenterol. 2018;24:3898–907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, et al. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet. 2022;31:2820–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egunsola AT, Bae Y, Jiang MM, Liu DS, Chen-Evenson Y, Bertin T, et al. Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia. J Clin Investig. 2017;127:1475–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Pang Q, Shen Q, Liu H, He J, Wang J, et al. Ubiquitin-fold modifier 1 inhibits apoptosis by suppressing the endoplasmic reticulum stress response in Raw264.7 cells. Int J Mol Med. 2014;33:1539–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Sheng L, Xu C, Li J, Ali I, Li H. et al.Ufbp1, a key player of Ufm1 conjugation system, protects against ketosis-induced liver injury via suppressing Smad3 activation.Front Cell Dev Biol.2021;9:676789

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Gong Y, Peng B, Shi R, Fan D, Zhao H, et al. MRE11 UFMylation promotes ATM activation. Nucleic Acids Res. 2019;47:4124–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Xu Y, Rogers H, Saidi L, Noguchi CT, Li H, et al. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res. 2020;30:5–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin B, Yu J, Nowsheen S, Wang M, Tu X, Liu T, et al. UFL1 promotes histone H4 ufmylation and ATM activation. Nat Commun. 2019;10:1242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeyakumar SM, Vajreswari A. Stearoyl-CoA desaturase 1: a potential target for non-alcoholic fatty liver disease?-perspective on emerging experimental evidence. World J Hepatol. 2022;14:168–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beysen C, Schroeder P, Wu E, Brevard J, Ribadeneira M, Lu W, et al. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with non-alcoholic fatty liver disease: Results from two early-phase randomized trials. Diabetes Obes Metab. 2021;23:700–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romano A, Friuli M, Del Coco L, Longo S, Vergara D, Del Boccio P, et al. Chronic oleoylethanolamide treatment decreases hepatic triacylglycerol level in rat liver by a PPARγ/SREBP-mediated suppression of fatty acid and triacylglycerol synthesis. Nutrients. 2021;13:394.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amin NB, Carvajal-Gonzalez S, Purkal J, Zhu T, Crowley C, Perez S, et al. Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis. Sci Transl Med. 2019;11:eaav9701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-Fed mice. Endocrinology. 2016;157:570–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walczak CP, Leto DE, Zhang L, Riepe C, Muller RY, DaRosa PA, et al. Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci USA. 2019;116:1299–308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurczak MJ, Lee AH, Jornayvaz FR, Lee HY, Birkenfeld AL, Guigni BA, et al. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem. 2012;287:2558–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 2008;7:520–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis. 2015;6:e1879.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006;147:943–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ. Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am J Physiol Endocrinol Metab. 2010;298:E1027–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandel-Kfir M, Almog T, Shaish A, Shlomai G, Anafi L, Avivi C, et al. Interleukin-1α deficiency attenuates endoplasmic reticulum stress-induced liver damage and CHOP expression in mice. J Hepatol. 2015;63:926–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell. 2014;26:331–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: