Tuesday, May 30, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Visceral mesenchymal stem cells from type 2 diabetes donors activate triglycerides synthesis in healthy adipocytes via metabolites exchange and cytokines secretion – International Journal of Obesity


  • Ladabaum U, Mannalithara A, Myer PA, Singh G. Obesity, abdominal obesity, physical activity, and caloric intake in U.S. adults: 1988–2010. Am J Med. 2014;127:717–27.e12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30:67–77.e3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Wang X, Zhang Q, Meng G, Liu L, Wu H, et al. Relationship between dietary patterns and carotid atherosclerosis among people aged 50 years or older: A population-based study in China. Front Nutr. 2021;8,723726.

  • Yang T, Zhao B, Pei D. Evaluation of the association between obesity markers and type 2 diabetes: a cohort study based on a physical examination population, J.Diabetes.Res. 2021;6503339.

  • American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, et al. Obesity and weight management for the prevention and treatment of type 2 diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45:S113–S124.

    Article 

    Google Scholar
     

  • Blüher M. Metabolically healthy obesity. Endocr Rev. 2020;41:bnaa004.

  • Shestakova EA, Yashkov YI, Rebrova OY, Kats MV, Samsonova MD, Dedov II. Obesity with and without type 2 diabetes: Are there differences in obesity history, lifestyle factors or concomitant pathology? Obes Metab. 2020;17:332–9.

    Article 

    Google Scholar
     

  • Cleal L, Aldea T, Chau YY. Fifty shades of white: Understanding heterogeneity in white adipose stem cells. Adipocyte. 2017;6:205–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM. Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice, Nat Commun. 2021;12:4623.

  • Wildman RP, Janssen I, Khan UI, Thurston R, Barinas-Mitchell E, El Khoudary SR, et al. Subcutaneous adipose tissue in relation to subclinical atherosclerosis and cardiometabolic risk factors in midlife women. Am J Clin Nutr. 2011;93:719–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gastaldelli A, Miyazaki Y, Pettiti M, Matsuda M, Mahankali S, Santini E, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab. 2002;87:5098–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko YH, Wong TC, Hsu YY, Kuo KL, Yang SH. The correlation between body fat, visceral fat, and nonalcoholic fatty liver disease. Metab Syndr Relat Disord. 2017;15:304–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorimachi H, Obokata M, Takahashi N, Reddy YNV, Jain CC, Verbrugge FH, et al. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. Eur Heart J. 2021;42:1595–605.

    Article 
    PubMed 

    Google Scholar
     

  • Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:22.

  • Sebag SC, Zhang Z, Qian Q, Li M, Zhu Z, Harata M, et al. ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue. Cell Rep. 2021;37:1100003.

  • Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med. 2020;12:eaaz8664.

  • Spalding KL, Bernard S, Näslund E, Salehpour M, Possnert G, Appelsved L, et al. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat Commun. 2017;8:15253.

  • Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorotnikov AV, Stafeev IS, Menshikov MY, Shestakova MV, Parfyonova YeV. Latent inflammation and defect in adipocyte renewal as a mechanism of obesity-associated insulin resistance. Biochemistry (Moscow). 2019;84:1329–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53:227–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2:455–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev. 2018;98:1911–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stafeev I, Podkuychenko N, Michurina S, Sklyanik I, Panevina A, Shestakova E, et al. Low proliferative potential of adipose-derived stromal cells associates with hypertrophy and inflammation in subcutaneous and omental adipose tissue of patients with type 2 diabetes mellitus. J Diabetes Complications. 2019;33:148–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michurina S, Stafeev I, Podkuychenko N, Sklyanik I, Shestakova E, Yah’yaev K, et al. Decreased UCP-1 expression in beige adipocytes from adipose-derived stem cells of type 2 diabetes patients associates with mitochondrial ROS accumulation during obesity. Diab Res Clin Pract. 2020;169:108410.

    Article 
    CAS 

    Google Scholar
     

  • Skubis-Sikora A, Sikora B, Witkowska A, Mazurek U, Gola J. Osteogenesis of adipose-derived stem cells from patients with glucose metabolism disorders. Mol Med. 2020;26:67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, et al. Type 2 diabetes mellitus facilitates shift of adipose-derived stem cells ex vivo differentiation toward osteogenesis among patients with obesity. Life (Basel). 2022;12:688.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao N, Zheng Y, Xie H, Zhao B, Zeng Y, Liu X, et al. Adipose tissue-derived stem cells ameliorate hyperglycemia, insulin resistance and liver fibrosis in the type 2 diabetic rats. Stem Cell Res Ther. 2017;8:286.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 2018;67:235–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Jiang Y, Huang Q, Wu Z, Pu H, Xu Z, et al. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res Ther. 2021;12:403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung S, Kleineidam B, Kleinheinz J. Regenerative potential of human adipose-derived stromal cells of various origins. J Cran Surg. 2015;43:2144–51.


    Google Scholar
     

  • Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells. 2019;11:147–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritter A, Friemel A, Roth S, Kreis NN, Hoock SC, Safdar BK, et al. Subcutaneous and visceral adipose-derived mesenchymal stem cells: commonality and diversity. Cells. 2019;8:E1288.

    Article 

    Google Scholar
     

  • Nagasaki H, Shang Q, Suzuki T, Hashimoto H, Yoshimura T, Kondo TA, et al. Low-serum culture system improves the adipogenic ability of visceral adipose tissue-derived stromal cells. Cell Biol Int. 2011;35:559–68.

    Article 
    PubMed 

    Google Scholar
     

  • Michaud A, Lacroix-Pepin N, Pelletier M, Daris M, Biertho L, Fortier MA, et al. Expression of genes related to prostaglandin synthesis or signaling in human subcutaneous and omental adipose tissue: depot differences and modulation by adipogenesis. Mediators Inflamm. 2014;2014:451620.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppe MJ, Nagtegaal ID, de Wilt JH, Ceelen WP. Recent insights into the pathophysiology of omental metastases. J Surg Oncol. 2014;110:670–5.

    Article 
    PubMed 

    Google Scholar
     

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods. 2008;45:115–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin M, Ryan CM, Pathan O, Abraham D, Denton CP, Butler PEM. Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls: implications for regenerative medicine. Stem Cell Res Ther. 2017;8:23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Exner T, Beretta CA, Gao Q, Afting C, Romero-Brey I, Bartenschlager R, et al. Lipid droplet quantification based on iterative image processing. J Lipid Res. 2019;60:1333–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huynh FK, Green MF, Koves TR, Hirschey MD. Measurement of fatty acid oxidation rates in animal tissues and cell lines. Methods Enzymol. 2014;542:391–405.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res. 2013;54:1812–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lund J, Aas V, Tingstad RH, Van Hees A, Nikolić N. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Sci Rep. 2018;8:9814.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Assis-Ferreira A, Saldanha-Gama R, Mesquita de Brito N, Renovato-Martins M, Loureiro Simões R, Barja-Fidalgo C, et al. Obesity enhances the recruitment of mesenchymal stem cells to visceral adipose tissue. J Mol Endocrinol. 2021;67:15–26.

    Article 
    PubMed 

    Google Scholar
     

  • Zuo Y, Xiao T, Qiu X, Liu Z, Zhang S, Zhou N. Adiponectin reduces apoptosis of diabetic cardiomyocytes by regulating miR-711/TLR4 axis. Diabetol Metab Syndr. 2022;14:131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zebrowska A, Skowronek A, Wojakowska A, Widlak P, Pietrowska M. Metabolome of exosomes: Focus on vesicles released by cancer cells and present in human body fluids. Int J Mol Sci. 2019;20:3461.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Wang H, Xie L, Hu F. Cross-talk between gut microbiota and adipose tissues in obesity and related metabolic diseases. Front Endocrinol(Lausanne). 2022;13:908868.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dentelli P, Barale C, Togliatto G, Trombetta A, Olgasi C, Gili M, et al. A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia. 2013;56:173–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwolanek D, Flicker M, Kirstätter E, Zaucke F, van Osch GJVM, Erben RG. β1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. Biores Open Access. 2015;4:39–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Shou P, Zhang L, Xu C, Zheng C, Han Y, et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells. 2014;32:327–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wada Y, Ikemoto T, Morine Y, Imura S, Saito Y, Yamada S, et al. The differences in the characteristics of insulin-producing cells using human adipose-tissue derived mesenchymal stem cells from subcutaneous and visceral tissues. Sci Rep. 2019;9:13204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Z, Zhou Z, Zhang H, Zhao H, Song P, Wang D, et al. CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res Ther. 2019;10:355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastrangelo F, Scacco S, Ballini A, Quaresima R, Gnoni A, De Vito D, et al. A pilot study of human mesenchymal stem cells from visceral and subcutaneous fat tissue and their differentiation to osteogenic phenotype. Eur Rev Med Pharmacol Sci. 2019;23:2924–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Vachkova E, Bosnakovski D, Yonkova P, Grigorova N, Ivanova Z, Todorov P, et al. Adipogenic potential of stem cells derived from rabbit subcutaneous and visceral adipose tissue in vitro. In Vitro Cell Dev Biol Anim. 2016;52:829–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleineidam B, Sielker S, Hanisch M, Kleinheinz J, Jung S. The micromass formation potential of human adipose-derived stromal cells isolated from different various origins. Head Face Med. 2018;14:19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klöting N, Koch L, Wunderlich T, Kern M, Ruschke K, Krone W, et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes. 2008;57:2074–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kineman RD, del Rio-Moreno M, Sarmento-Cabral A. Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/LoxP system. J Mol Endocrinol. 2018;61:T187–T198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1286–R1296.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonen A, Tandon NN, Glatz JFC, Luiken JJFP, Heigenhauser GJF. The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes.(Lond). 2006;30:877–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes. 2014;63:900–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowicka A, Marini FC, Solley TN, Elizondo PB, Zhang Y, Sharp HJ, et al. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS One. 2013;8:e81859.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aliakbari S, Mohammadi M, Rezaee MA, Amini AA, Fakhari S, Rahmani MR. Impaired immunomodulatory ability of type 2 diabetic adipose-derived mesenchymal stem cells in regulation of inflammatory condition in mixed leukocyte reaction. EXCLI J. 2019;18:852–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie. 2013;95:2235–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayaz-Guner S, Alessio N, Acar MB, Aprile D, Özcan S, Di Bernardo G, et al. A comparative study on normal and obese mice indicates that the secretome of mesenchymal stromal cells is influenced by tissue environment and physiopathological conditions. Cell Commun Signal. 2020;18:118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayer H, Bertram H, Lindenmaier W, Korf T, Weber H, Weich H. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem. 2005;95:827–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rider DA, Dombrowski C, Sawyer AA, Ng GHB, Leong D, Hutmacher DW, et al. Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells. 2008;26:1598–608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duque G, Huang DC, Macoritto M, Rivas D, Yang XF, Georges Ste-Marie L, et al. Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis. Stem Cells. 2009;27:550–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pendharkar SA, Singh RG, Petrov MS. Pro-inflammatory cytokine-induced lipolysis after an episode of acute pancreatitis. Arch Physiol Biochem. 2017;124:401–9.

    Article 
    PubMed 

    Google Scholar
     

  • Issa N, Lachance G, Bellmann K, Laplante M, Stadler K, Marette A. Cytokines promote lipolysis in 3T3-L1 adipocytes through induction of NADPH oxidase 3 expression and superoxide production. J Lipid Res. 2018;59:2321–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley KP, Chen Y, Barra NG, Heal M, Kwok K, Tamrakar AK, et al. Inflammation promotes adipocyte lipolysis via IRE1 kinase. J Biol Chem. 2021;296:100440. article number 100440

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klopp AH, Zhang Y, Solley T, Amaya-Manzanares F, Marini F, Andreeff M, et al. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res. 2012;18:771–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natsume M, Shimura T, Iwasaki H, Okuda Y, Hayashi K, Takahashi S, et al. Omental adipocytes promote peritoneal metastasis of gastric cancer through the CXCL2-VEGFA axis. Br J Cancer. 2020;123:459–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corvera S, Gealekman O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta. 2013;1842:463–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Investig. 2017;127:74–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: