Thursday, June 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Vitamins as regulators of calcium-containing kidney stones — new perspectives on the role of the gut microbiome – Nature Reviews Urology


  • Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Prevalence of kidney stones in mainland China: a systematic review. Sci. Rep. 7, 41630 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turney, B. W., Reynard, J. M., Noble, J. G. & Keoghane, S. R. Trends in urological stone disease. BJU Int. 109, 1082–1087 (2012).

    PubMed 

    Google Scholar
     

  • Moe, O. W. Kidney stones: pathophysiology and medical management. Lancet 367, 333–344 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Scales, C. D., Smith, A. C., Hanley, J. M. & Saigal, C. S., Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, A. J. et al. Incidence of kidney stones in the United States: the continuous national health and nutrition examination survey. J. Urol. 207, 851–856 (2022).

    PubMed 

    Google Scholar
     

  • Rule, A. D. et al. The ROKS nomogram for predicting a second symptomatic stone episode. J. Am. Soc. Nephrol. 25, 2878–2886 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rule, A. D., Lieske, J. C. & Pais, V. M. Management of kidney stones in 2020. J. Am. Med. Assoc. 323, 1961–1962 (2020).


    Google Scholar
     

  • Scales, C. D. et al. Urinary stone disease: advancing knowledge, patient care, and population health. Clin. J. Am. Soc. Nephrol. 11, 1305–1312 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saigal, C. S., Joyce, G. & Timilsina, A. R., Urologic Diseases in America Project. Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 68, 1808–1814 (2005).

    PubMed 

    Google Scholar
     

  • Hyams, E. S. & Matlaga, B. R. Economic impact of urinary stones. Transl. Androl. Urol. 3, 278–283 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasui, T., Iguchi, M., Suzuki, S. & Kohri, K. Prevalence and epidemiological characteristics of urolithiasis in Japan: national trends between 1965 and 2005. Urology 71, 209–213 (2008).

    PubMed 

    Google Scholar
     

  • Edvardsson, V. O., Indridason, O. S., Haraldsson, G., Kjartansson, O. & Palsson, R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 83, 146–152 (2013).

    PubMed 

    Google Scholar
     

  • Singh, P. et al. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin. Proc. 90, 1356–1365 (2015).

    PubMed 

    Google Scholar
     

  • Lieske, J. C. et al. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 9, 2141–2146 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratkalkar, V. N. & Kleinman, J. G. Mechanisms of stone formation. Clin. Rev. Bone Min. Metab. 9, 187–197 (2011).

    CAS 

    Google Scholar
     

  • Chmiel, J. A. et al. High-throughput in vitro gel-based plate assay to screen for calcium oxalate stone inhibitors. Urol. Int. 106, 616–622 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Randall, A. An hypothesis for the origin of renal calculus. N. Engl. J. Med. 214, 234–242 (1936).


    Google Scholar
     

  • Khan, S. R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol. 3, 256–276 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraro, P. M., Bargagli, M., Trinchieri, A. & Gambaro, G. Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian-vegan diets. Nutrients 12, E779 (2020).


    Google Scholar
     

  • D’Alessandro, C. et al. Which diet for calcium stone patients: a real-world approach to preventive care. Nutrients 11, E1182 (2019).


    Google Scholar
     

  • Heilberg, I. P. & Goldfarb, D. S. Optimum nutrition for kidney stone disease. Adv. Chronic Kidney Dis. 20, 165–174 (2013).

    PubMed 

    Google Scholar
     

  • Siener, R. & Hesse, A. The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur. Urol. 42, 289–296 (2002).

    PubMed 

    Google Scholar
     

  • Statovci, D., Aguilera, M., MacSharry, J. & Melgar, S. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 8, 838 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Candeliere, F. et al. Indole and p-cresol in feces of healthy subjects: concentration, kinetics, and correlation with microbiome. Front. Mol. Med. 2, 1–13 (2022).


    Google Scholar
     

  • Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.e2 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Zinöcker, M. K. & Lindseth, I. A. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 10, E365 (2018).


    Google Scholar
     

  • Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Freedman, P. Renal colic and persistent hypercalcuria following self-administration of vitamin D. Lancet 272, 668–669 (1957).

    CAS 
    PubMed 

    Google Scholar
     

  • Whiteside, S. A., Razvi, H., Dave, S., Reid, G. & Burton, J. P. The microbiome of the urinary tract — a role beyond infection. Nat. Rev. Urol. 12, 81–90 (2015).

    PubMed 

    Google Scholar
     

  • Tasian, G. E. et al. Oral antibiotic exposure and kidney stone disease. J. Am. Soc. Nephrol. 29, 1731–1740 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawson, K. A., Allison, M. J. & Hartman, P. A. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl. Environ. Microbiol. 40, 833–839 (1980).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan, S. H. et al. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 68, 3841–3847 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kachroo, N. et al. Meta-analysis of clinical microbiome studies in urolithiasis reveal age, stone composition, and study location as the predominant factors in urolithiasis-associated microbiome composition. mBio 12, e0200721 (2021).

    PubMed 

    Google Scholar
     

  • Ticinesi, A. et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67, 2097–2106 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Magwira, C. A. et al. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. J. Appl. Microbiol. 113, 418–428 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Tang, R. et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 46, 503–514 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Al, K. Characterizing the role of the microbiome in kidney stone disease (Western University, 2020).

  • Ticinesi, A. et al. Calcium oxalate nephrolithiasis and gut microbiota: not just a gut-kidney axis. A nutritional perspective. Nutrients 12, 548 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, A. W., Choy, D., Penniston, K. L. & Lange, D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 96, 180–188 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease. Elife 10, e63642 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, J. M. et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44, 399–407 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suryavanshi, M. V. et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci. Rep. 6, 34712 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suryavanshi, M. V., Bhute, S. S., Gune, R. P. & Shouche, Y. S. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci. Rep. 8, 16598 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanford, J., Charlton, K., Stefoska-Needham, A., Ibrahim, R. & Lambert, K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol. 21, 215 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daisley, B. A. et al. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep. 37, 110087 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V. & Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6, 148 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Tanoury, Z., Piskunov, A. & Rochette-Egly, C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J. Lipid Res. 54, 1761–1775 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanumihardjo, S. A. et al. Biomarkers of nutrition for development (BOND) — vitamin A review. J. Nutr. 146, 1816S–1848SS (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grases, F., Garcia-Gonzalez, R., Genestar, C., Torres, J. J. & March, J. G. Vitamin A and urolithiasis. Clin. Chim. Acta 269, 147–157 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Munday, J. S. et al. Cystitis, pyelonephritis, and urolithiasis in rats accidentally fed a diet deficient in vitamin A. J. Am. Assoc. Lab. Anim. Sci. 48, 790–794 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardaoui, M., Sakly, R., Neffati, F., Najjar, M. F. & El Hani, A. Effect of vitamin A supplemented diet on calcium oxalate renal stone formation in rats. Exp. Toxicol. Pathol. 62, 573–576 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Wong, Y. F. et al. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS One 6, e16770 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kancha, R. K. & Anasuya, A. Contribution of vitamin A deficiency to calculogenic risk factors of urine: studies in children. Biochem. Med. Metab. Biol. 47, 1–9 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Kato, J. et al. Lipid peroxidation and antioxidant vitamins in urolithiasis. Indian. J. Clin. Biochem. 22, 128–130 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conaway, H. H., Henning, P. & Lerner, U. H. Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr. Rev. 34, 766–797 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. et al. Association of vitamin A and zinc status with altered intestinal permeability: analyses of cohort data from northeastern Brazil. J. Health Popul. Nutr. 21, 309–315 (2003).

    PubMed 

    Google Scholar
     

  • Quadro, L. et al. Retinol and retinol-binding protein: gut integrity and circulating immunoglobulins. J. Infect. Dis. 182 (Suppl. 1), S97–S102 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Retinoic acid facilitates toll-like receptor 4 expression to improve intestinal barrier function through retinoic acid receptor beta. Cell Physiol. Biochem. 42, 1390–1406 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, S. & Kanda, Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J. Pharmacol. Sci. 140, 337–344 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. L., Swartz-Basile, D. A., Rubin, D. C. & Levin, M. S. Retinoic acid stimulates early cellular proliferation in the adapting remnant rat small intestine after partial resection. J. Nutr. 127, 1297–1303 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Jijon, H. B. et al. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system. Mucosal Immunol. 11, 703–715 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, N. & Vaishnava, S. Vitamin A at the interface of host–commensal–pathogen interactions. PLoS Pathog. 15, e1007750 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulay, S. R. et al. Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am. J. Physiol. Renal Physiol. 310, F785–F795 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knauf, F. et al. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J. Am. Soc. Nephrol. 22, 2247–2255 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashir, M. et al. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G1–G14 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, J.-Y. et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1. Cell Rep. 33, 108245 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • McAleer, I. M., Kaplan, G. W., Bradley, J. S., Carroll, S. F. & Griffith, D. P. Endotoxin content in renal calculi. J. Urol. 169, 1813–1814 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, J., Moturi, K. R., Wang, L., Zhang, K. & Yu, C. Gut derived-endotoxin contributes to inflammation in severe ischemic acute kidney injury. BMC Nephrol. 20, 16 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nupur, L. N. U. et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol. 16, 96 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ram, S., Mitra, M., Shah, F., Tirkey, S. R. & Mishra, S. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges. J. Funct. Foods 67, 103867 (2020).

    CAS 

    Google Scholar
     

  • Olson, J. A. & Hayaishi, O. The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine. Proc. Natl Acad. Sci. USA 54, 1364–1370 (1965).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y.-S., Park, C.-S. & Oh, D.-K. Retinal production from beta-carotene by beta-carotene 15,15′-dioxygenase from an unculturable marine bacterium. Biotechnol. Lett. 32, 957–961 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Culligan, E. P., Sleator, R. D., Marchesi, J. R. & Hill, C. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15′-monooxygenase. PLoS One 9, e103318 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Culligan, E. P., Sleator, R. D., Marchesi, J. R. & Hill, C. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J. 6, 1916–1925 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, S.-H. et al. Alternative biotransformation of retinal to retinoic acid or retinol by an aldehyde dehydrogenase from Bacillus cereus. Appl. Environ. Microbiol. 82, 3940–3946 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grizotte-Lake, M. et al. Gut commensals suppress epithelial cell retinoic acid synthesis to regulate intestinal interleukin-22 activity and prevent microbial dysbiosis. Immunity 49, 1103–1115.e6 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellmann, H. & Mooney, S. Vitamin B6: a molecule for human health? Molecules 15, 442–459 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amadasi, A. et al. Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr. Med. Chem. 14, 1291–1324 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Harris, S. A. & Folkers, K. Synthetic vitamin B6. Science 89, 347 (1939).

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg, J., Ischebeck, T. & Commichau, F. M. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 35, 31–40 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Percudani, R. & Peracchi, A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinforma. 10, 273 (2009).


    Google Scholar
     

  • Pey, A. L., Albert, A. & Salido, E. Protein homeostasis defects of alanine-glyoxylate aminotransferase: new therapeutic strategies in primary hyperoxaluria type I. Biomed. Res. Int. 2013, 687658 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X.-Y., Gan, Q.-Z. & Ouyang, J.-M. Calcium oxalate toxicity in renal epithelial cells: the mediation of crystal size on cell death mode. Cell Death Discov. 1, 1–8 (2015).


    Google Scholar
     

  • Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Vitamin B6 intake and the risk of incident kidney stones. Urolithiasis 46, 265–270 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J. Urol. 155, 1847–1851 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Curhan, G. C., Willett, W. C., Speizer, F. E. & Stampfer, M. J. Intake of vitamins B6 and C and the risk of kidney stones in women. J. Am. Soc. Nephrol. 10, 840–845 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Gershoff, S. N., Faragalla, F. F., Nelson, D. A. & Andrus, S. B. Vitamin B6 deficiency and oxalate nephrocalcinosis in the cat. Am. J. Med. 27, 72–80 (1959).

    CAS 
    PubMed 

    Google Scholar
     

  • Di Tommaso, L. et al. Renal calcium phosphate and oxalate deposition in prolonged vitamin B6 deficiency: studies on a rat model of urolithiasis. BJU Int. 89, 571–575 (2002).

    PubMed 

    Google Scholar
     

  • Aihara, K., Byer, K. J. & Khan, S. R. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int. 64, 1283–1291 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Colditz, G. A. The Nurses’ Health Study: a cohort of US women followed since 1976. J. Am. Med. Women’s Assoc. 50, 40–44 (1995).

    CAS 

    Google Scholar
     

  • Mitwalli, A., Ayiomamitis, A., Grass, L. & Oreopoulos, D. G. Control of hyperoxaluria with large doses of pyridoxine in patients with kidney stones. Int. Urol. Nephrol. 20, 353–359 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Rattan, V., Sidhu, H., Vaidyanathan, S., Thind, S. K. & Nath, R. Effect of combined supplementation of magnesium oxide and pyridoxine in calcium-oxalate stone formers. Urol. Res. 22, 161–165 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz-Alvarado, O. et al. Pyridoxine and dietary counseling for the management of idiopathic hyperoxaluria in stone-forming patients. Urology 77, 1054–1058 (2011).

    PubMed 

    Google Scholar
     

  • Balcke, P., Schmidt, P., Zazgornik, J., Kopsa, H. & Minar, E. Pyridoxine therapy in patients with renal calcium oxalate calculi. Proc. Eur. Dial. Transpl. Assoc. 20, 417–421 (1983).

    CAS 

    Google Scholar
     

  • Revúsová, V. et al. The evaluation of some biochemical parameters in pyridoxine-treated calcium oxalate renal stone formers. Urol. Int. 32, 348–352 (1977).

    PubMed 

    Google Scholar
     

  • Reddy, S. V. K., Shaik, A. B. & Bokkisam, S. Effect of potassium magnesium citrate and vitamin B-6 prophylaxis for recurrent and multiple calcium oxalate and phosphate urolithiasis. Korean J. Urol. 55, 411–416 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaelin, A., Casez, J.-P. & Jaeger, P. Vitamin B6 metabolites in idiopathic calcium stone formers: no evidence for a link to hyperoxaluria. Urol. Res. 32, 61–68 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoyer-Kuhn, H. et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin. J. Am. Soc. Nephrol. 9, 468–477 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fargue, S., Knight, J., Holmes, R. P., Rumsby, G. & Danpure, C. J. Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim. Biophys. Acta 1862, 1055–1062 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oppici, E. et al. Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum. Mol. Genet. 24, 5500–5511 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshii, K., Hosomi, K., Sawane, K. & Kunisawa, J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front. Nutr. 6, 48 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakano, H. & Gregory, J. F. Pyridoxine and pyridoxine-5′-β-D-glucoside exert different effects on tissue B-6 vitamers but similar effects on β-glucosidase activity in rats. J. Nutr. 125, 2751–2762 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. The gut microbiota regulates autism-like behavior by mediating vitamin B6 homeostasis in EphB6-deficient mice. Microbiome 8, 120 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soto-Martin, E. C. et al. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 11, e00886–20 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinken, A. et al. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J. Bacteriol. 196, 3289–3302 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richts, B. & Commichau, F. M. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Appl. Microbiol. Biotechnol. 105, 2297–2305 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishikimi, M. & Yagi, K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am. J. Clin. Nutr. 54, 1203S–1208S (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Lykkesfeldt, J. & Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients 11, E2412 (2019).


    Google Scholar
     

  • Naidu, K. A. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2, 7 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellman, L. & Burns, J. J. Metabolism of L-ascorbic acid-1-C14 in man. J. Biol. Chem. 230, 923–930 (1958).

    CAS 
    PubMed 

    Google Scholar
     

  • Emadi-Konjin, P., Verjee, Z., Levin, A. V. & Adeli, K. Measurement of intracellular vitamin C levels in human lymphocytes by reverse phase high performance liquid chromatography (HPLC). Clin. Biochem. 38, 450–456 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Rowe, S. & Carr, A. C. Global vitamin C status and prevalence of deficiency: a cause for concern? Nutrients 12, E2008 (2020).


    Google Scholar
     

  • Valdés, F. Vitamin C. Actas Dermosifiliogr. 97, 557–568 (2006).

    PubMed 

    Google Scholar
     

  • Hemilä, H. Vitamin C and infections. Nutrients 9, E339 (2017).


    Google Scholar
     

  • Smirnoff, N. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic. Biol. Med. 122, 116–129 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston, C. S. Biomarkers for establishing a tolerable upper intake level for vitamin C. Nutr. Rev. 57, 71–77 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Bhojani, N. et al. Update — 2022 Canadian Urological Association guideline: evaluation and medical management of the kidney stone patient. Can. Urol. Assoc. J. 16, 175–188 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    PubMed 

    Google Scholar
     

  • Skolarikos, A. et al. EAU guidelines on urolithiasis. in EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam (EAU Guidelines Office, 2022).

  • Ferraro, P. M., Curhan, G. C., Gambaro, G. & Taylor, E. N. Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am. J. Kidney Dis. 67, 400–407 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 15, 3225–3232 (2004).

    PubMed 

    Google Scholar
     

  • Institute of Medicine (US) Panel on dietary antioxidants and related compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (National Academies Press (US), 2000).

  • Thomas, L. D. K., Elinder, C.-G., Tiselius, H.-G., Wolk, A. & Akesson, A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern. Med. 173, 386–388 (2013).

    PubMed 

    Google Scholar
     

  • Subar, A. F. et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. Am. J. Epidemiol. 158, 1–13 (2003).

    PubMed 

    Google Scholar
     

  • Travica, N. et al. The contribution of plasma and brain vitamin C on age and gender-related cognitive differences: a mini-review of the literature. Front. Integr. Neurosci. 14, 47 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wandzilak, T. R., D’Andre, S. D., Davis, P. A. & Williams, H. E. Effect of high dose vitamin C on urinary oxalate levels. J. Urol. 151, 834–837 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Traxer, O., Huet, B., Poindexter, J., Pak, C. Y. C. & Pearle, M. S. Effect of ascorbic acid consumption on urinary stone risk factors. J. Urol. 170, 397–401 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Chai, W., Liebman, M., Kynast-Gales, S. & Massey, L. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers. Am. J. Kidney Dis. 44, 1060–1069 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, E. N. & Curhan, G. C. Determinants of 24-hour urinary oxalate excretion. Clin. J. Am. Soc. Nephrol. 3, 1453–1460 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baxmann, A. C., De O G Mendonça, C. & Heilberg, I. P. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 63, 1066–1071 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Hesse, A., Schneeberger, W., Engfeld, S., Von Unruh, G. E. & Sauerbruch, T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with [13C2]oxalate. J. Am. Soc. Nephrol. 10 (Suppl. 14), S329–S333 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Sikora, P. et al. [13C2]oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria. Kidney Int. 73, 1181–1186 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Chalmers, A. H., Cowley, D. M. & McWhinney, B. C. Stability of ascorbate in urine: relevance to analyses for ascorbate and oxalate. Clin. Chem. 31, 1703–1705 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Moyad, M. A. et al. Vitamin C with metabolites reduce oxalate levels compared to ascorbic acid: a preliminary and novel clinical urologic finding. Urol. Nurs. 29, 95–102 (2009).

    PubMed 

    Google Scholar
     

  • Robitaille, L. et al. Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism 58, 263–269 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peña de la Vega, L., Lieske, J. C., Milliner, D., Gonyea, J. & Kelly, D. G. Urinary oxalate excretion increases in home parenteral nutrition patients on a higher intravenous ascorbic acid dose. JPEN J. Parenter. Enter. Nutr. 28, 435–438 (2004).


    Google Scholar
     

  • Cossey, L. N., Rahim, F. & Larsen, C. P. Oxalate nephropathy and intravenous vitamin C. Am. J. Kidney Dis. 61, 1032–1035 (2013).

    PubMed 

    Google Scholar
     

  • Fontana, F. et al. Oxalate nephropathy caused by excessive vitamin C administration in 2 patients with COVID-19. Kidney Int. Rep. 5, 1815–1822 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buehner, M. et al. Oxalate nephropathy after continuous infusion of high-dose vitamin C as an adjunct to burn resuscitation. J. Burn. Care Res. 37, e374–e379 (2016).

    PubMed 

    Google Scholar
     

  • Prier, M., Carr, A. C. & Baillie, N. No reported renal stones with intravenous vitamin C administration: a prospective case series study. Antioxidants 7, E68 (2018).


    Google Scholar
     

  • Yanase, F. et al. Harm of IV high-dose vitamin C therapy in adult patients: a scoping review. Crit. Care Med. 48, e620–e628 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Thamilselvan, V., Menon, M. & Thamilselvan, S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. BJU Int. 114, 140–150 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Fishman, A. I. et al. Preventive effect of specific antioxidant on oxidative renal cell injury associated with renal crystal formation. Urology 82, 489.e1–7 (2013).

    PubMed 

    Google Scholar
     

  • Jaturakan, O. et al. Combination of vitamin E and vitamin C alleviates renal function in hyperoxaluric rats via antioxidant activity. J. Vet. Med. Sci. 79, 896–903 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzou, D. T., Taguchi, K., Chi, T. & Stoller, M. L. Animal models of urinary stone disease. Int. J. Surg. 36, 596–606 (2016).

    PubMed 

    Google Scholar
     

  • Tannehill-Gregg, S. H. et al. Strain-related differences in urine composition of male rats of potential relevance to urolithiasis. Toxicol. Pathol. 37, 293–305 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Pham, V. T., Dold, S., Rehman, A., Bird, J. K. & Steinert, R. E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 95, 35–53 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chambial, S., Dwivedi, S., Shukla, K. K., John, P. J. & Sharma, P. Vitamin C in disease prevention and cure: an overview. Indian. J. Clin. Biochem. 28, 314–328 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, Y.-L. et al. A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol. 12, 457–467 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Q. et al. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients 12, 381 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otten, A. T. et al. Vitamin C supplementation in healthy individuals leads to shifts of bacterial populations in the gut — a pilot study. Antioxidants 10, 1278 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, V. T. et al. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome — a pilot study. Gut Microbes 13, 1875774 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, C., Chou, J., Wang, T., Zhao, H. & Zhang, B. Pantothenic acid, vitamin C, and biotin play important roles in the growth of Lactobacillus helveticus. Front. Microbiol. 9, 1194 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linares, D., Michaud, P., Delort, A.-M., Traïkia, M. & Warrand, J. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J. Agric. Food Chem. 59, 4140–4147 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Stuivenberg, G., Daisley, B., Akouris, P. & Reid, G. In vitro assessment of histamine and lactate production by a multi-strain synbiotic. J. Food Sci. Technol. https://doi.org/10.1007/s13197-021-05327-7 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamberlain, C. A., Hatch, M. & Garrett, T. J. Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One 14, e0222393 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yew, W. S. & Gerlt, J. A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J. Bacteriol. 184, 302–306 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, R. P. & Assimos, D. G. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J. Urol. 160, 1617–1624 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Afzal, M., Shafeeq, S., Henriques-Normark, B. & Kuipers, O. P. UlaR activates expression of the ula operon in Streptococcus pneumoniae in the presence of ascorbic acid. Microbiology 161, 41–49 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Martinez-Sanguiné, A. Y. et al. Salmonella enterica serovars Dublin and Enteritidis comparative proteomics reveals differential expression of proteins involved in stress resistance, virulence, and anaerobic metabolism. Infect. Immun. 89, e00606–e00620 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mai, S.-N. T. et al. The evolutionary history of Shigella flexneri serotype 6 in Asia. Microb. Genom. 7, 000736 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehmeti, I., Solheim, M., Nes, I. F. & Holo, H. Enterococcus faecalis grows on ascorbic acid. Appl. Env. Microbiol. 79, 4756–4758 (2013).

    CAS 

    Google Scholar
     

  • Campos, E. et al. The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer. J. Bacteriol. 190, 6615–6624 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z., Aboulwafa, M., Smith, M. H. & Saier, M. H. The ascorbate transporter of Escherichia coli. J. Bacteriol. 185, 2243–2250 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, V. S., Sabui, S., Moradi, H., Marchant, J. S. & Said, H. M. Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochim. Biophys. Acta Biomembr. 1860, 556–565 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, V. S., Sabui, S., Subramenium, G. A., Marchant, J. S. & Said, H. M. Tumor necrosis factor alpha reduces intestinal vitamin C uptake: a role for NF-κB-mediated signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G241–G248 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, V. S., Teafatiller, T., Agrawal, A., Kitazawa, M. & Marchant, J. S. Effect of lipopolysaccharide and TNFα on neuronal ascorbic acid uptake. Mediat. Inflamm. 2021, 4157132 (2021).


    Google Scholar
     

  • Heskett, C. W. et al. Enteropathogenic Escherichia coli infection inhibits intestinal ascorbic acid uptake via dysregulation of its transporter expression. Dig. Dis. Sci. 66, 2250–2260 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, V. S., Sabui, S., Marchant, J. S. & Said, H. M. MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. J. Nutr. Biochem. 65, 46–53 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sangani, R. et al. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Mol. Cell Endocrinol. 410, 19–26 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, G. Extrarenal vitamin D activation and interactions between vitamin D2, vitamin D3, and vitamin D analogs. Annu. Rev. Nutr. 33, 23–44 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Holick, M. F. et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210, 203–205 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Slepchenko, B. M. & Bronner, F. Modeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry. Am. J. Physiol. Cell Physiol. 281, C270–C281 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Diaz de Barboza, G., Guizzardi, S. & Tolosa de Talamoni, N. Molecular aspects of intestinal calcium absorption. World J. Gastroenterol. 21, 7142–7154 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleet, J. C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell Endocrinol. 453, 36–45 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lassiter, W. E., Gottschalk, C. W. & Mylle, M. Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am. J. Physiol. 204, 771–775 (1963).

    CAS 

    Google Scholar
     

  • Moor, M. B. & Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 310, F1337–F1350 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bindels, R. J., Hartog, A., Timmermans, J. & Van Os, C. H. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am. J. Physiol. 261, F799–F807 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoenderop, J. G. J., van der Kemp, A. W. C. M., Urben, C. M., Strugnell, S. A. & Bindels, R. J. M. Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. Kidney Int. 66, 1082–1089 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Nijenhuis, T., Hoenderop, J. G. J., van der Kemp, A. W. C. M. & Bindels, R. J. M. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J. Am. Soc. Nephrol. 14, 2731–2740 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoenderop, J. G. J. et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J. 16, 1398–1406 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Xue, Y. & Fleet, J. C. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology 136, 1317–1327, e1-2 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto, Y. et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154, 1008–1020 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kitazawa, R., Mori, K., Yamaguchi, A., Kondo, T. & Kitazawa, S. Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J. Cell Biochem. 105, 1289–1297 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Mori, T. et al. The vitamin D receptor in osteoblast-lineage cells is essential for the proresorptive activity of 1α,25(OH)2D3 in vivo. Endocrinology 161, bqaa178 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, H. et al. Association between circulating vitamin D level and urolithiasis: a systematic review and meta-analysis. Nutrients 9, E301 (2017).


    Google Scholar
     

  • Malihi, Z., Wu, Z., Stewart, A. W., Lawes, C. M. & Scragg, R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am. J. Clin. Nutr. 104, 1039–1051 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Vitamin D intake and the risk of incident kidney stones. J. Urol. 197, 405–410 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Girón-Prieto, M. S. et al. Analysis of vitamin D deficiency in calcium stone-forming patients. Int. Urol. Nephrol. 48, 1243–1246 (2016).

    PubMed 

    Google Scholar
     

  • Ticinesi, A. et al. Idiopathic calcium nephrolithiasis and hypovitaminosis D: a case-control study. Urology 87, 40–45 (2016).

    PubMed 

    Google Scholar
     

  • Dholakia, K., Selvaraj, N. & Ragavan, N. Prevalence of vitamin D inadequacy in urolithiasis patients. Cureus 13, e15379 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, J. & Chonchol, M. B. Vitamin D and kidney stone disease. Curr. Opin. Nephrol. Hypertens. 22, 383–389 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Tavasoli, S. & Taheri, M. Vitamin D and calcium kidney stones: a review and a proposal. Int. Urol. Nephrol. 51, 101–111 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Martins, J. S., Palhares, M. D. O., Teixeira, O. C. M. & Gontijo Ramos, M. Vitamin D status and its association with parathyroid hormone concentration in Brazilians. J. Nutr. Metab. 2017, 9056470 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, B. C. & Bilezikian, J. P. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 22, 41–50 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prochaska, M., Taylor, E., Vaidya, A. & Curhan, G. Low bone density and bisphosphonate use and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 12, 1284–1290 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taguchi, K. et al. Low bone mineral density is a potential risk factor for symptom onset and related with hypocitraturia in urolithiasis patients: a single-center retrospective cohort study. BMC Urol. 20, 174 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlberg, C., Seuter, S. & Heikkinen, S. The first genome-wide view of vitamin D receptor locations and their mechanistic implications. Anticancer. Res. 32, 271–282 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Bikle, D. D. Extraskeletal actions of vitamin D. Ann. N. Y. Acad. Sci. 1376, 29–52 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, R. L. et al. Vitamin D metabolites and the gut microbiome in older men. Nat. Commun. 11, 5997 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study. Eur. J. Clin. Nutr. 76, 1017–1023 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, J., Mikami, A., Mizoue, K. & Omura, S. Transformation of 25- and 1 alpha-hydroxyvitamin D3 to 1α, 25-dihydroxyvitamin D3 by using Streptomyces sp. strains. Appl. Environ. Microbiol. 57, 2841–2846 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawada, N. et al. Conversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem. Biophys. Res. Commun. 320, 156–164 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Fujii, Y. et al. Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem. Biophys. Res. Commun. 385, 170–175 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Ang, S. S. et al. Molecular characterization, modeling and docking of CYP107CB2 from Bacillus lehensis G1, an alkaliphile. Comput. Biol. Chem. 56, 19–29 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ang, S. S. et al. Biochemical characterization of the cytochrome P450 CYP107CB2 from Bacillus lehensis G1. Protein J. 37, 180–193 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto, E. A. & Jørgensen, T. N. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Front. Immunol. 10, 3141 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Jakobsen, J. Bioavailability and bioactivity of vitamin D3 active compounds — which potency should be used for 25-hydroxyvitamin D3? Int. Congr. Ser. 1297, 133–142 (2007).

    CAS 

    Google Scholar
     

  • Vasilevskaya, A. V. et al. Identification of Mycobacterium tuberculosis enzyme involved in vitamin D and 7-dehydrocholesterol metabolism. J. Steroid Biochem. Mol. Biol. 169, 202–209 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Varaksa, T. et al. Metabolic fate of human immunoactive sterols in Mycobacterium tuberculosis. J. Mol. Biol. 433, 166763 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bora, S. A., Kennett, M. J., Smith, P. B., Patterson, A. D. & Cantorna, M. T. The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Front. Immunol. 9, 408 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Min. Res. 19, 429–435 (2004).

    CAS 

    Google Scholar
     

  • Peterson, C. A. & Heffernan, M. E. Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. J. Inflamm. 5, 10 (2008).


    Google Scholar
     

  • Du, J., Wei, X., Ge, X., Chen, Y. & Li, Y. C. Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon. Endocrinology 158, 4064–4075 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases. Inflamm. Bowel Dis. 20, 1910–1918 (2014).

    PubMed 

    Google Scholar
     

  • Waterhouse, J. C., Perez, T. H. & Albert, P. J. Reversing bacteria-induced vitamin D receptor dysfunction is key to autoimmune disease. Ann. N. Y. Acad. Sci. 1173, 757–765 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Gaschott, T. & Stein, J. Short-chain fatty acids and colon cancer cells: the vitamin D receptor–butyrate connection. Recent Results Cancer Res. 164, 247–257 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy 12, 1057–1058 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, F.-C. & Huang, S.-C. The combined beneficial effects of postbiotic butyrate on active vitamin D3-orchestrated innate immunity to Salmonella colitis. Biomedicines 9, 1296 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, M. L., Martoni, C. J. & Prakash, S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab. 98, 2944–2951 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Reboul, E. et al. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol. Nutr. Food Res. 55, 691–702 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Castagliuolo, I. et al. Co-administration of vitamin D3 and Lacticaseibacillus paracasei DG increase 25-hydroxyvitamin D serum levels in mice. Ann. Microbiol. 71, 42 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. Natural forms of vitamin E as effective agents for cancer prevention and therapy. Adv. Nutr. 8, 850–867 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosomi, A. et al. Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 409, 105–108 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Khan, S. R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J. Urol. 189, 803–811 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Thamilselvan, S. & Menon, M. Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int. 96, 117–126 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H.-S., Chen, J., Chen, C.-F. & Ma, M.-C. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int. 70, 699–710 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Santhosh Kumar, M. & Selvam, R. Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J. Nutr. Biochem. 14, 306–313 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakly, R., Fekih, M., Ben Amor, A., Najjar, M. F. & Mbazaa, M. Possible role of vitamin A and E deficiency in human idiopathic lithiasis. Ann. Urol. 37, 217–219 (2003).

    CAS 

    Google Scholar
     

  • Siener, R., Machaka, I., Alteheld, B., Bitterlich, N. & Metzner, C. Effect of fat-soluble vitamins A, D, E and K on vitamin status and metabolic profile in patients with fat malabsorption with and without urolithiasis. Nutrients 12, E3110 (2020).


    Google Scholar
     

  • Tungsanga, K., Sriboonlue, P., Futrakul, P., Yachantha, C. & Tosukhowong, P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol. Res. 33, 65–69 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H.-S., Ma, M.-C., Chen, C.-F. & Chen, J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62, 1123–1128 (2003).

    PubMed 

    Google Scholar
     

  • Mo, L. et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 66, 1159–1166 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sumitra, K., Pragasam, V., Sakthivel, R., Kalaiselvi, P. & Varalakshmi, P. Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm-Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol. Dial. Transpl. 20, 1407–1415 (2005).

    CAS 

    Google Scholar
     

  • Viswanathan, P. et al. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. Urol. Res. 39, 269–282 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, P. E. & Tove, S. B. Occurrence of alpha-tocopherolquinone and alpha-tocopherolquinol in microorganisms. J. Bacteriol. 151, 1397–1402 (1982).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattler, S. E., Cahoon, E. B., Coughlan, S. J. & DellaPenna, D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant. Physiol. 132, 2184–2195 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, B. et al. Fermentative production of vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat. Commun. 11, 5155 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albermann, C. et al. Biosynthesis of the vitamin E compound delta-tocotrienol in recombinant Escherichia coli cells. Chembiochem 9, 2524–2533 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ran, L. et al. Effects of antibiotics on degradation and bioavailability of different vitamin E forms in mice. Biofactors 45, 450–462 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Knarreborg, A., Lauridsen, C., Engberg, R. M. & Jensen, S. K. Dietary antibiotic growth promoters enhance the bioavailability of alpha-tocopheryl acetate in broilers by altering lipid absorption. J. Nutr. 134, 1487–1492 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Reboul, E. Vitamin E bioavailability: mechanisms of intestinal absorption in the spotlight. Antioxidants 6, E95 (2017).


    Google Scholar
     

  • Carey, M. C. & Small, D. M. Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch. Intern. Med. 130, 506–527 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hofmann, A. F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159, 2647–2658 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Łozińska, N. & Jungnickel, C. Importance of conjugation of the bile salt on the mechanism of lipolysis. Molecules 26, 5764 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roager, H. M. et al. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice. Gut Microbes 5, 296–303 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lombardo, D. & Guy, O. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim. Biophys. Acta 611, 147–155 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • West, B. et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am. J. Kidney Dis. 51, 741–747 (2008).

    PubMed 

    Google Scholar
     

  • Barzegar-Amini, M. et al. Association between serum vitamin E concentrations and the presence of metabolic syndrome: a population-based cohort study. Acta Biomed. 92, e2021047 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halder, M. et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int. J. Mol. Sci. 20, 896 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mladěnka, P. et al. Vitamin K — sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr. Rev. 80, 677–698 (2022).

    PubMed 

    Google Scholar
     

  • Sato, T., Schurgers, L. J. & Uenishi, K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr. J. 11, 93 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schurgers, L. J. & Vermeer, C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 30, 298–307 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Schurgers, L. J. & Vermeer, C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim. Biophys. Acta 1570, 27–32 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Okano, T. et al. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 283, 11270–11279 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Price, P. A. & Baukol, S. A. 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J. Biol. Chem. 255, 11660–11663 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, J. D., Otawara, Y. & Price, P. A. 1,25-Dihydroxyvitamin D3 stimulates the synthesis of matrix gamma-carboxyglutamic acid protein by osteosarcoma cells. Mutually exclusive expression of vitamin K-dependent bone proteins by clonal osteoblastic cell lines. J. Biol. Chem. 263, 911–916 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, J. D. & Price, P. A. Induction of Matrix Gla protein synthesis during prolonged 1,25-dihydroxyvitamin D3 treatment of osteosarcoma cells. Calcif. Tissue Int. 46, 270–279 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. Vitamin K and energy transduction: a base strength amplification mechanism. Science 269, 1684–1691 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Buitenhuis, H. C., Soute, B. A. & Vermeer, C. Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim. Biophys. Acta 1034, 170–175 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, J. D. & Price, P. A. Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent Matrix Gla protein. Implications for the possible functions of Matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J. Biol. Chem. 263, 11033–11036 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Moser, S. C. & van der Eerden, B. C. J. Osteocalcin — a versatile bone-derived hormone. Front. Endocrinol. 9, 794 (2018).


    Google Scholar
     

  • Jaminon, A. M. G. et al. Matrix Gla protein is an independent predictor of both intimal and medial vascular calcification in chronic kidney disease. Sci. Rep. 10, 6586 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schurgers, L. J. et al. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin. J. Am. Soc. Nephrol. 5, 568–575 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurnatowska, I. et al. Plasma desphospho-uncarboxylated Matrix Gla protein as a marker of kidney damage and cardiovascular risk in advanced stage of chronic kidney disease. Kidney Blood Press. Res. 41, 231–239 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Liabeuf, S. et al. Vascular calcification in patients with type 2 diabetes: the involvement of matrix Gla protein. Cardiovasc. Diabetol. 13, 85 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayer, O. et al. Desphospho-uncarboxylated Matrix Gla protein is associated with increased aortic stiffness in a general population. J. Hum. Hypertens. 30, 418–423 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fabris, A. et al. The relationship between calcium kidney stones, arterial stiffness and bone density: unraveling the stone-bone-vessel liaison. J. Nephrol. 28, 549–555 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Shavit, L. et al. Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin. J. Am. Soc. Nephrol. 10, 278–285 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stapleton, A. M., Timme, T. L. & Ryall, R. L. Gene expression of prothrombin in the human kidney and its potential relevance to kidney stone disease. Br. J. Urol. 81, 666–671 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Ogasawara, K., Van Reen, R. & Ako, H. γ-Carboxyglutamic acid, a component in human pediatric bladder stones containing calcium salts. J. Urol. 137, 349–352 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Lian, J. B., Prien, E. L., Glimcher, M. J. & Gallop, P. M. The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J. Clin. Invest. 59, 1151–1157 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grover, P. K. & Ryall, R. L. Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: relationship between protein structure and inhibitory activity. Eur. J. Biochem. 263, 50–56 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurutz, J. W., Carvalho, M. & Nakagawa, Y. Nephrocalcin isoforms coat crystal surfaces and differentially affect calcium oxalate monohydrate crystal morphology, growth, and aggregation. J. Cryst. Growth 255, 392–402 (2003).

    CAS 

    Google Scholar
     

  • Nakagawa, Y. et al. Urine glycoprotein crystal growth inhibitors. Evidence for a molecular abnormality in calcium oxalate nephrolithiasis. J. Clin. Invest. 76, 1455–1462 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa, Y., Ahmed, M., Hall, S. L., Deganello, S. & Coe, F. L. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid. J. Clin. Invest. 79, 1782–1787 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalmeijer, G. W. et al. Circulating Matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J. Nutr. Biochem. 24, 624–628 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Akbulut, A. C. et al. Vitamin K2 needs an RDI separate from vitamin K1. Nutrients 12, 1852 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puzantian, H. et al. Circulating dephospho-uncarboxylated Matrix Gla-protein Is associated With kidney dysfunction and arterial stiffness. Am. J. Hypertens. 31, 988–994 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chirinos, J. A. et al. Aldosterone, inactive matrix gla-protein, and large artery stiffness in hypertension. J. Am. Soc. Hypertens. 12, 681–689 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jespersen, T. et al. Uncarboxylated matrix Gla-protein: a biomarker of vitamin K status and cardiovascular risk. Clin. Biochem. 83, 49–56 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, B. et al. Matrix Gla protein expression in NRK-52E cells exposed to oxalate and calcium oxalate monohydrate crystals. Urol. Int. 85, 237–241 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Khan, A., Wang, W. & Khan, S. R. Calcium oxalate nephrolithiasis and expression of Matrix Gla protein in the kidneys. World J. Urol. 32, 123–130 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Goiko, M. et al. Peptides of Matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals. PLoS One 8, e80344 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Vitamin K1 inhibition of renal crystal formation through Matrix Gla protein in the kidney. Kidney Blood Press. Res. 44, 1392–1403 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wei, F.-F. et al. The risk of nephrolithiasis is causally related to inactive Matrix Gla protein, a marker of vitamin K status: a Mendelian randomization study in a Flemish population. Nephrol. Dial. Transpl. 33, 514–522 (2018).

    CAS 

    Google Scholar
     

  • Castiglione, V. et al. Evaluation of inactive Matrix-Gla-protein (MGP) as a biomarker for incident and recurrent kidney stones. J. Nephrol. 33, 101–107 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, B. et al. A polymorphism of Matrix Gla protein gene is associated with kidney stones. J. Urol. 177, 2361–2365 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Murugesan, A., Kumar, L. & Janarthanan, P. Status of single nucleotide polymorphism of Matrix Gla protein gene (rs4236) in nephrolithiasis: a preliminary study in Indian population. Int. J. Appl. Basic. Med. Res. 8, 38–41 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. et al. A polymorphism of Matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene 511, 127–130 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Dalmeijer, G. W. et al. The effect of menaquinone-7 supplementation on circulating species of Matrix Gla protein. Atherosclerosis 225, 397–402 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Knapen, M. H. J. et al. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 113, 1135–1144 (2015).

    PubMed 

    Google Scholar
     

  • Westenfeld, R. et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am. J. Kidney Dis. 59, 186–195 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Theuwissen, E. et al. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br. J. Nutr. 108, 1652–1657 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, E., Aoki, M., Watanabe, F. & Kamimura, A. Low-dose menaquinone-4 improves γ-carboxylation of osteocalcin in young males: a non-placebo-controlled dose–response study. Nutr. J. 13, 85 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inaba, N., Sato, T. & Yamashita, T. Low-dose daily intake of vitamin K2 (menaquinone-7) improves osteocalcin γ-carboxylation: a double-blind, randomized controlled trials. J. Nutr. Sci. Vitaminol. 61, 471–480 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa, K. et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468, 117–121 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez, F. & Collins, M. D. Vitamin K composition of anaerobic gut bacteria. FEMS Microbiol. Lett. 41, 175–180 (1987).

    CAS 

    Google Scholar
     

  • Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S. & Benno, Y. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 57, 941–946 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Hiratsuka, T. et al. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321, 1670–1673 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ravcheev, D. A. & Thiele, I. Genomic analysis of the human gut microbiome suggests novel enzymes involved in quinone biosynthesis. Front. Microbiol. 7, 128 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karl, J. P. et al. Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota-targeted dietary intervention. Am. J. Clin. Nutr. 102, 84–93 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Karl, J. P. et al. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. Am. J. Clin. Nutr. 106, 1052–1061 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozaki, D., Kubota, R., Maeno, T., Abdelhakim, M. & Hitosugi, N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos. Int. 32, 145–156 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wagatsuma, K. et al. Diversity of gut microbiota affecting serum level of undercarboxylated osteocalcin in patients with Crohn’s disease. Nutrients 11, 1541 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conly, J. & Stein, K. Reduction of vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clin. Invest. Med. 17, 531–539 s(1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Luna, M. et al. Components of the gut microbiome that influence bone tissue-level strength. J. Bone Min. Res. 36, 1823–1834 (2021).

    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: