Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189. https://doi.org/10.1212/wnl.0000000000001729 (2015).
Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: A comparative study. JAMA Neurol. 71, 276–283. https://doi.org/10.1001/jamaneurol.2013.5857 (2014).
Banwell, B. et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol. 22, 268–282. https://doi.org/10.1016/s1474-4422(22)00431-8 (2023).
Huda, S. et al. Neuromyelitis optica spectrum disorders. Clin. Med. (Lond) 19, 169–176. https://doi.org/10.7861/clinmedicine.19-2-169 (2019).
Kim, H. J. et al. MRI characteristics of neuromyelitis optica spectrum disorder: An international update. Neurology 84, 1165–1173. https://doi.org/10.1212/wnl.0000000000001367 (2015).
Wingerchuk, D. M., Pittock, S. J., Lucchinetti, C. F., Lennon, V. A. & Weinshenker, B. G. A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology 68, 603–605. https://doi.org/10.1212/01.wnl.0000254502.87233.9a (2007).
Holroyd, K. B., Manzano, G. S. & Levy, M. Update on neuromyelitis optica spectrum disorder. Curr. Opin. Ophthalmol. 31, 462–468. https://doi.org/10.1097/icu.0000000000000703 (2020).
Akaishi, T. et al. Progressive patterns of neurological disability in multiple sclerosis and neuromyelitis optica spectrum disorders. Sci. Rep. 10, 13890. https://doi.org/10.1038/s41598-020-70919-w (2020).
Akaishi, T. et al. Progression pattern of neurological disability with respect to clinical attacks in anti-MOG antibody-associated disorders. J. Neuroimmunol. 351, 577467. https://doi.org/10.1016/j.jneuroim.2020.577467 (2021).
Radue, E. W. et al. Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch Neurol. 69, 1259–1269. https://doi.org/10.1001/archneurol.2012.1051 (2012).
Wang, L. et al. The alteration of circulating lymphocyte subsets during tacrolimus therapy in neuromyelitis optica spectrum disorder and its correlation with clinical outcomes. Front. Neurol. 12, 816721. https://doi.org/10.3389/fneur.2021.816721 (2021).
Traub, J., Häusser-Kinzel, S. & Weber, M. S. Differential effects of MS therapeutics on B cells-implications for their use and failure in AQP4-positive NMOSD patients. Int. J. Mol. Sci. 21, 1. https://doi.org/10.3390/ijms21145021 (2020).
Holmøy, T., Høglund, R. A., Illes, Z., Myhr, K. M. & Torkildsen, Ø. Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder. J. Neurol. 268, 4522–4536. https://doi.org/10.1007/s00415-020-10235-5 (2021).
Akaishi, T. et al. White blood cell count profiles in multiple sclerosis during attacks before the initiation of acute and chronic treatments. Sci. Rep. 11, 22357. https://doi.org/10.1038/s41598-021-01942-8 (2021).
Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173. https://doi.org/10.1016/s1474-4422(17)30470-2 (2018).
Hozawa, A. et al. Study profile of the Tohoku medical megabank community-based cohort study. J. Epidemiol. 31, 65–76. https://doi.org/10.2188/jea.JE20190271 (2021).
Kuriyama, S. et al. The Tohoku Medical Megabank project: Design and mission. J. Epidemiol. 26, 493–511. https://doi.org/10.2188/jea.JE20150268 (2016).
Takahashi, T. et al. Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica. Tohoku J. Exp. Med. 210, 307–313. https://doi.org/10.1620/tjem.210.307 (2006).
Takahashi, T. et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: A study on antibody titre. Brain 130, 1235–1243. https://doi.org/10.1093/brain/awm062 (2007).
Bender, R. & Lange, S. Adjusting for multiple testing–when and how?. J. Clin. Epidemiol. 54, 343–349. https://doi.org/10.1016/s0895-4356(00)00314-0 (2001).
von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 147, 573–577. https://doi.org/10.7326/0003-4819-147-8-200710160-00010 (2007).
Li, Y. et al. The regulatory roles of neutrophils in adaptive immunity. Cell Commun. Signal 17, 147. https://doi.org/10.1186/s12964-019-0471-y (2019).
de Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 16, 378–391. https://doi.org/10.1038/nri.2016.49 (2016).
Fani Maleki, A. & Rivest, S. Innate immune cells: Monocytes, monocyte-derived macrophages and microglia as therapeutic targets for Alzheimer’s disease and multiple sclerosis. Front Cell Neurosci. 13, 355. https://doi.org/10.3389/fncel.2019.00355 (2019).
Woodberry, T., Bouffler, S. E., Wilson, A. S., Buckland, R. L. & Brüstle, A. The emerging role of neutrophil granulocytes in multiple sclerosis. J. Clin. Med. 7. https://doi.org/10.3390/jcm7120511 (2018).
Akaishi, T., Takahashi, T. & Nakashima, I. Peripheral blood monocyte count at onset may affect the prognosis in multiple sclerosis. J. Neuroimmunol. 319, 37–40. https://doi.org/10.1016/j.jneuroim.2018.03.016 (2018).
Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452. https://doi.org/10.1146/annurev.immunol.26.021607.090326 (2008).
Hasselbalch, I. C. et al. The neutrophil-to-lymphocyte ratio is associated with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 4, 2055217318813183. https://doi.org/10.1177/2055217318813183 (2018).
Fu, H. et al. Neutrophil- and platelet-to-lymphocyte ratios are correlated with disease activity in rheumatoid arthritis. Clin. Lab. 61, 269–273. https://doi.org/10.7754/clin.lab.2014.140927 (2015).
Acarturk, G. et al. Neutrophil-to-lymphocyte ratio in inflammatory bowel disease—as a new predictor of disease severity. Bratisl. Lek Listy 116, 213–217. https://doi.org/10.4149/bll_2015_041 (2015).
Faria, S. S. et al. The neutrophil-to-lymphocyte ratio: A narrative review. Ecancermedicalscience 10, 702. https://doi.org/10.3332/ecancer.2016.702 (2016).
Huang, W. C. et al. Neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio are associated with a 2-year relapse in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 58, 103514. https://doi.org/10.1016/j.msard.2022.103514 (2022).
Demirci, S., Demirci, S., Kutluhan, S., Koyuncuoglu, H. R. & Yurekli, V. A. The clinical significance of the neutrophil-to-lymphocyte ratio in multiple sclerosis. Int. J. Neurosci. 126, 700–706. https://doi.org/10.3109/00207454.2015.1050492 (2016).
Guzel, I., Mungan, S., Oztekin, Z. N. & Ak, F. Is there an association between the Expanded Disability Status Scale and inflammatory markers in multiple sclerosis?. J. Chin. Med. Assoc. 79, 54–57. https://doi.org/10.1016/j.jcma.2015.08.010 (2016).
Huang, Y. et al. The clinical significance of neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio in Guillain-Barré syndrome. Int. J. Neurosci. 128, 729–735. https://doi.org/10.1080/00207454.2017.1418342 (2018).
Ren, H., Liu, X., Wang, L. & Gao, Y. Lymphocyte-to-monocyte ratio: A novel predictor of the prognosis of acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 26, 2595–2602. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.019 (2017).
Hemond, C. C., Glanz, B. I., Bakshi, R., Chitnis, T. & Healy, B. C. The neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios are independently associated with neurological disability and brain atrophy in multiple sclerosis. BMC Neurol. 19, 23. https://doi.org/10.1186/s12883-019-1245-2 (2019).
Sheremata, W. A. et al. Evidence of platelet activation in multiple sclerosis. J. Neuroinflammation 5, 27. https://doi.org/10.1186/1742-2094-5-27 (2008).
Sechi, E. et al. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD): A review of clinical and MRI features, diagnosis, and management. Front. Neurol. 13, 885218. https://doi.org/10.3389/fneur.2022.885218 (2022).
Kaneko, K. et al. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: A cross-sectional study and potential therapeutic implications. J. Neurol. Neurosurg. Psychiatry 89, 927–936. https://doi.org/10.1136/jnnp-2018-317969 (2018).
Akaishi, T. et al. Risk factors of attacks in neuromyelitis optica spectrum disorders. J. Neuroimmunol. 343, 577236. https://doi.org/10.1016/j.jneuroim.2020.577236 (2020).
Pittock, S. J. & Lennon, V. A. Aquaporin-4 autoantibodies in a paraneoplastic context. Arch. Neurol. 65, 629–632. https://doi.org/10.1001/archneur.65.5.629 (2008).
Sepúlveda, M. et al. Clinical profile of patients with paraneoplastic neuromyelitis optica spectrum disorder and aquaporin-4 antibodies. Mult. Scler. 24, 1753–1759. https://doi.org/10.1177/1352458517731914 (2018).
Akaishi, T. et al. Impact of comorbid Sjögren syndrome in anti-aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J. Neurol. 268, 1938–1944. https://doi.org/10.1007/s00415-020-10377-6 (2021).
Pittock, S. J. et al. Neuromyelitis optica and non organ-specific autoimmunity. Arch. Neurol. 65, 78–83. https://doi.org/10.1001/archneurol.2007.17 (2008).